Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA; Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA.
Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA.
J Biol Chem. 2022 Nov;298(11):102522. doi: 10.1016/j.jbc.2022.102522. Epub 2022 Sep 23.
Many pathogens synthesize inositol phosphorylceramide (IPC) as the major sphingolipid (SL), differing from the mammalian host where sphingomyelin (SM) or more complex SLs predominate. The divergence between IPC synthase and mammalian SL synthases has prompted interest as a potential drug target. However, in the trypanosomatid protozoan Leishmania, cultured insect stage promastigotes lack de novo SL synthesis (Δspt2) and SLs survive and remain virulent, as infective amastigotes salvage host SLs and continue to produce IPC. To further understand the role of IPC, we generated null IPCS mutants in Leishmania major (Δipcs). Unexpectedly and unlike fungi where IPCS is essential, Δipcs was remarkably normal in culture and highly virulent in mouse infections. Both IPCS activity and IPC were absent in Δipcs promastigotes and amastigotes, arguing against an alternative route of IPC synthesis. Notably, salvaged mammalian SM was highly abundant in purified amastigotes from both WT and Δipcs, and salvaged SLs could be further metabolized into IPC. SM was about 7-fold more abundant than IPC in WT amastigotes, establishing that SM is the dominant amastigote SL, thereby rendering IPC partially redundant. These data suggest that SM salvage likely plays key roles in the survival and virulence of both WT and Δipcs parasites in the infected host, confirmation of which will require the development of methods or mutants deficient in host SL/SM uptake in the future. Our findings call into question the suitability of IPCS as a target for chemotherapy, instead suggesting that approaches targeting SM/SL uptake or catabolism may warrant further emphasis.
许多病原体合成肌醇磷酸神经酰胺(IPC)作为主要的鞘脂(SL),与以鞘磷脂(SM)或更复杂的 SL 为主的哺乳动物宿主不同。IPC 合酶与哺乳动物 SL 合酶的差异引起了人们的兴趣,认为它是一个潜在的药物靶点。然而,在原生动物利什曼原虫中,培养的昆虫阶段前鞭毛体缺乏从头合成 SL(Δspt2),并且 SL 仍然存活并保持毒力,因为感染性无鞭毛体可以从宿主中回收 SL 并继续产生 IPC。为了进一步了解 IPC 的作用,我们在 Leishmania major 中生成了 IPCS 缺失突变体(Δipcs)。出乎意料的是,与真菌中 IPCS 必不可少的情况不同,Δipcs 在培养中非常正常,在小鼠感染中具有高度毒力。IPC 的缺失 IPCS 突变体(Δipcs)在前鞭毛体和无鞭毛体中既没有 IPCS 活性,也没有 IPC,这表明 IPC 的合成途径并非唯一。值得注意的是,从 WT 和 Δipcs 的纯化无鞭毛体中都高度富含回收的哺乳动物 SM,并且回收的 SL 可以进一步代谢为 IPC。SM 在 WT 无鞭毛体中的含量比 IPC 高约 7 倍,这表明 SM 是主要的无鞭毛体 SL,从而使 IPC 部分冗余。这些数据表明,SM 回收可能在感染宿主中 WT 和 Δipcs 寄生虫的存活和毒力中发挥关键作用,未来需要开发缺乏宿主 SL/SM 摄取的方法或突变体来验证这一点。我们的研究结果质疑了 IPCS 作为化疗靶点的适宜性,反而表明针对 SM/SL 摄取或分解代谢的方法可能需要进一步强调。