Suppr超能文献

预测2型糖尿病患者糖尿病视网膜病变风险模型的开发与验证

Development and validation of a model that predicts the risk of diabetic retinopathy in type 2 diabetes mellitus patients.

作者信息

Yang Jing, Jiang Sheng

机构信息

State Key Laboratory of Pathogenesis, Prevention andTreatment of High Incidence Diseases in Central Asia, Department of Endocrinology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830017, China.

出版信息

Acta Diabetol. 2023 Jan;60(1):43-51. doi: 10.1007/s00592-022-01973-1. Epub 2022 Sep 26.

Abstract

AIMS

Diabetic retinopathy is the leading cause of blindness in people with type 2 diabetes. To enable primary care physicians to identify high-risk type 2 diabetic patients with diabetic retinopathy at an early stage, we developed a nomogram model to predict the risk of developing diabetic retinopathy in the Xinjiang type 2 diabetic population.

METHODS

In a retrospective study, we collected data on 834 patients with type 2 diabetes through an electronic medical record system. Stepwise regression was used to filter variables. Logistic regression was applied to build a nomogram prediction model and further validated in the training set. The c-index, forest plot, calibration plot, and clinical decision curve analysis were used to comprehensively validate the model and evaluate its accuracy and clinical validity.

RESULTS

Four predictors were selected to establish the final model: hypertension, blood urea nitrogen, duration of diabetes, and diabetic peripheral neuropathy. The model displayed medium predictive power with a C-index of 0.781(95%CI:0.741-0.822) in the training set and 0.865(95%CI:0.807-0.923)in the validation set. The calibration curve of the DR probability shows that the predicted results of the nomogram are in good agreement with the actual results. Decision curve analysis demonstrated that the novel nomogram was clinically valuable.

CONCLUSIONS

The nomogram of the risk of developing diabetic nephropathy contains 4 characteristics. that can help primary care physicians quickly identify individuals at high risk of developing DR in patients with type 2 diabetes, to intervene as soon as possible.

摘要

目的

糖尿病视网膜病变是2型糖尿病患者失明的主要原因。为使基层医疗医生能够早期识别2型糖尿病高危患者的糖尿病视网膜病变,我们开发了一种列线图模型,以预测新疆2型糖尿病人群发生糖尿病视网膜病变的风险。

方法

在一项回顾性研究中,我们通过电子病历系统收集了834例2型糖尿病患者的数据。采用逐步回归筛选变量。应用逻辑回归建立列线图预测模型,并在训练集中进一步验证。采用c指数、森林图、校准图和临床决策曲线分析对模型进行综合验证,评估其准确性和临床有效性。

结果

选择4个预测因素建立最终模型:高血压、血尿素氮、糖尿病病程和糖尿病周围神经病变。该模型在训练集中显示出中等预测能力,C指数为0.781(95%CI:0.741-0.822),在验证集中为0.865(95%CI:0.807-0.923)。糖尿病视网膜病变概率的校准曲线表明,列线图的预测结果与实际结果吻合良好。决策曲线分析表明,新型列线图具有临床价值。

结论

糖尿病肾病发生风险列线图包含4个特征,可帮助基层医疗医生快速识别2型糖尿病患者中发生糖尿病视网膜病变的高危个体,以便尽早进行干预。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验