College of Computer and Information Science Chongqing Normal University, Chongqing, China.
Comput Intell Neurosci. 2022 Sep 17;2022:9288902. doi: 10.1155/2022/9288902. eCollection 2022.
The sequential recommendation can predict the user's next behavior according to the user's historical interaction sequence. To better capture users' preferences, some sequential recommendation models propose time-aware attention networks to capture users' long-term and short-term intentions. However, although these models have achieved good results, they ignore the influence of users on the rating information of items. We believe that in the sequential recommendation, the user's displayed feedback (rating) on an item reflects the user's preference for the item, which directly affects the user's choice of the next item to a certain extent. In different periods of sequential recommendation, the user's rating of the item reflects the change in the user's preference. In this paper, we separately model the time interval of items in the user's interaction sequence and the ratings of the items in the interaction sequence to obtain temporal context and rating context, respectively. Finally, we exploit the self-attention mechanism to capture the impact of temporal context and rating context on users' preferences to predict items that users would click next. Experiments on three public benchmark datasets show that our proposed model (SATRAC) outperforms several state-of-the-art methods. The Hit@10 value of the SATRAC model on the three datasets (Movies-1M, Amazon-Movies, Amazon-CDs) increased by 0.73%, 2.73%, and 1.36%, and the NDCG@10 value increased by 5.90%, 3.47%, and 4.59%, respectively.
序列推荐可以根据用户的历史交互序列预测用户的下一个行为。为了更好地捕捉用户的偏好,一些序列推荐模型提出了基于时间感知的注意力网络来捕捉用户的长期和短期意图。然而,尽管这些模型取得了很好的效果,但它们忽略了用户对项目评分信息的影响。我们认为,在序列推荐中,用户对项目的显示反馈(评分)反映了用户对项目的偏好,这在一定程度上直接影响用户对下一个项目的选择。在序列推荐的不同时期,用户对项目的评分反映了用户偏好的变化。在本文中,我们分别对用户交互序列中项目的时间间隔和交互序列中项目的评分进行建模,以分别获得时间上下文和评分上下文。最后,我们利用自注意力机制来捕捉时间上下文和评分上下文对用户偏好的影响,以预测用户接下来会点击的项目。在三个公共基准数据集上的实验表明,我们提出的模型(SATRAC)优于几种最先进的方法。在三个数据集(Movies-1M、Amazon-Movies、Amazon-CDs)上,SATRAC 模型的 Hit@10 值分别提高了 0.73%、2.73%和 1.36%,NDCG@10 值分别提高了 5.90%、3.47%和 4.59%。