Department of Computer Science, School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China.
Department of Computer Science, School of Computer Science and Technology, University of Bedfordshire, Luton, United Kingdom.
Big Data. 2022 Oct;10(5):466-478. doi: 10.1089/big.2021.0395. Epub 2022 Aug 24.
Existing recommender systems usually make recommendations by exploiting the binary relationship between users and items, and assume that users only have flat preferences for items. They ignore the users' intentions as an origin and driving force for users' performance. Cognitive science tells us that users' preference comes from an explicit intention. They first have an intention to possess a particular (type of) item(s) and then their preferences emerge when facing multiple available options. Most of the data used in recommender systems are composed of heterogeneous information contained in a complicated network's structure. Learning effective representations from these heterogeneous information networks (HINs) can help capture the user's intention and preferences, therefore, improving recommendation performance. We propose a hierarchical user's intention and preferences modeling for sequential recommendation based on relation-aware HIN embedding (HIP-RHINE). We first construct a multirelational semantic space of heterogeneous information networks to learn node embedding based on specific relations. We then model user's intention and preferences using hierarchical trees. Finally, we leverage the structured decision patterns to learn user's preferences and thereafter make recommendations. To demonstrate the effectiveness of our proposed model, we also report on the conducted experiments on three real data sets. The results demonstrated that our model achieves significant improvements in Recall and Mean Reciprocal Rank metrics compared with other baselines.
现有的推荐系统通常通过利用用户和项目之间的二进制关系来进行推荐,并假设用户对项目只有平面偏好。它们忽略了用户意图作为用户表现的起源和驱动力。认知科学告诉我们,用户的偏好来自于明确的意图。他们首先有拥有特定(类型的)项目的意图,然后在面对多个可用选项时,他们的偏好才会显现出来。推荐系统中使用的大多数数据都是由复杂网络结构中包含的异构信息组成的。从这些异构信息网络(HIN)中学习有效的表示可以帮助捕捉用户的意图和偏好,从而提高推荐性能。我们提出了一种基于关系感知 HIN 嵌入(HIP-RHINE)的序列推荐的分层用户意图和偏好建模。我们首先构建了一个多关系语义空间的异构信息网络,以基于特定关系学习节点嵌入。然后,我们使用分层树来对用户的意图和偏好进行建模。最后,我们利用结构化决策模式来学习用户的偏好,然后进行推荐。为了证明我们提出的模型的有效性,我们还在三个真实数据集上进行了实验。结果表明,与其他基线相比,我们的模型在召回率和平均倒数排名指标上都取得了显著的提高。