Bürger Johannes, Schalles Vera, Kim Jisoo, Jang Bumjoon, Zeisberger Matthias, Gargiulo Julian, de S Menezes Leonardo, Schmidt Markus A, Maier Stefan A
Chair in Hybrid Nanosystems, Nanoinstitute Munich, Ludwig-Maximilians-Universität Munich, Königinstraße 10, 80539 Munich, Germany.
Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany.
ACS Photonics. 2022 Sep 21;9(9):3012-3024. doi: 10.1021/acsphotonics.2c00725. Epub 2022 Sep 2.
Due to their unique capabilities, hollow-core waveguides are playing an increasingly important role, especially in meeting the growing demand for integrated and low-cost photonic devices and sensors. Here, we present the antiresonant hollow-core microgap waveguide as a platform for the on-chip investigation of light-gas interaction over centimeter-long distances. The design consists of hollow-core segments separated by gaps that allow external access to the core region, while samples with lengths up to 5 cm were realized on silicon chips through 3D-nanoprinting using two-photon absorption based direct laser writing. The agreement of mathematical models, numerical simulations and experiments illustrates the importance of the antiresonance effect in that context. Our study shows the modal loss, the effect of gap size and the spectral tuning potential, with highlights including extremely broadband transmission windows (>200 nm), very high contrast resonance (>60 dB), exceptionally high structural openness factor (18%) and spectral control by nanoprinting (control over dimensions with step sizes (i.e., increments) of 60 nm). The application potential was demonstrated in the context of laser scanning absorption spectroscopy of ammonia, showing diffusion speeds comparable to bulk diffusion and a low detection limit. Due to these unique properties, application of this platform can be anticipated in a variety of spectroscopy-related fields, including bioanalytics, environmental sciences, and life sciences.
由于其独特的性能,空心波导正发挥着越来越重要的作用,特别是在满足对集成和低成本光子器件及传感器不断增长的需求方面。在此,我们展示了反谐振空心微间隙波导作为一个用于在厘米级长度上对光与气体相互作用进行片上研究的平台。该设计由被间隙隔开的空心段组成,这些间隙允许外部进入核心区域,同时通过基于双光子吸收的直接激光写入的3D纳米打印在硅芯片上实现了长度达5厘米的样品。数学模型、数值模拟和实验结果的一致性说明了反谐振效应在这一背景下的重要性。我们的研究展示了模式损耗、间隙尺寸的影响以及光谱调谐潜力,亮点包括极宽带传输窗口(>200纳米)、非常高的对比度谐振(>60分贝)、极高的结构开放因子(18%)以及通过纳米打印进行光谱控制(以60纳米的步长(即增量)控制尺寸)。在氨的激光扫描吸收光谱的背景下展示了其应用潜力,显示出与体扩散相当的扩散速度和低检测限。由于这些独特的特性,可以预期该平台在包括生物分析、环境科学和生命科学在内的各种光谱相关领域中的应用。