Suppr超能文献

量子化学、统计力学和人工智能在计算光谱学中的整合:不同溶剂中 TEMPO 自由基的紫外-可见光谱。

Integration of Quantum Chemistry, Statistical Mechanics, and Artificial Intelligence for Computational Spectroscopy: The UV-Vis Spectrum of TEMPO Radical in Different Solvents.

机构信息

Scuola Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126 Pisa, Italy.

Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy.

出版信息

J Chem Theory Comput. 2022 Oct 11;18(10):6203-6216. doi: 10.1021/acs.jctc.2c00654. Epub 2022 Sep 27.

Abstract

The ongoing integration of quantum chemistry, statistical mechanics, and artificial intelligence is paving the route toward more effective and accurate strategies for the investigation of the spectroscopic properties of medium-to-large size chromophores in condensed phases. In this context we are developing a novel workflow aimed at improving the generality, reliability, and ease of use of the available computational tools. In this paper we report our latest developments with specific reference to unsupervised atomistic simulations employing non periodic boundary conditions (NPBC) followed by clustering of the trajectories employing optimized feature spaces. Next accurate variational computations are performed for a representative point of each cluster, whereas intracluster fluctuations are taken into account by a cheap yet reliable perturbative approach. A number of methodological improvements have been introduced including, e.g., more realistic reaction field effects at the outer boundary of the simulation sphere, automatic definition of the feature space by continuous perception of solute-solvent interactions, full account of polarization and charge transfer in the first solvation shell, and inclusion of vibronic contributions. After its validation, this new approach has been applied to the challenging case of solvatochromic effects on the UV-vis spectra of a prototypical nitroxide radical (TEMPO) in different solvents. The reliability, effectiveness, and robustness of the new platform is demonstrated by the remarkable agreement with experiment of the results obtained through an unsupervised approach characterized by a strongly reduced computational cost as compared to that of conventional quantum mechanics and molecular mechanics models without any accuracy reduction.

摘要

量子化学、统计力学和人工智能的持续融合正在为研究凝聚相中介到大尺寸发色团的光谱性质开辟更有效和准确的策略。在这方面,我们正在开发一种新的工作流程,旨在提高现有计算工具的通用性、可靠性和易用性。本文我们报告了我们的最新进展,特别是涉及使用非周期性边界条件(NPBC)进行无监督原子模拟,然后使用优化的特征空间对轨迹进行聚类。接下来,对每个簇的代表点进行精确的变分计算,而通过一种廉价但可靠的微扰方法考虑簇内波动。已经引入了许多方法学改进,例如,在模拟球的外部边界处具有更现实的反应场效应,通过连续感知溶质-溶剂相互作用自动定义特征空间,在第一溶剂化壳中完全考虑极化和电荷转移,以及包含振动贡献。在验证之后,该新方法已应用于不同溶剂中典型氮氧自由基(TEMPO)的紫外-可见光谱的溶剂化变色效应这一具有挑战性的案例。与实验结果的显著一致性证明了新平台的可靠性、有效性和稳健性,与传统量子力学和分子力学模型相比,该新平台的计算成本大大降低,而准确性没有降低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c19e/9558374/8b93276c8fa3/ct2c00654_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验