Daaoub Abdalghani, Ornago Luca, Vogel David, Bastante Pablo, Sangtarash Sara, Parmeggiani Matteo, Kamer Jerry, Agraït Nicolás, Mayor Marcel, van der Zant Herre, Sadeghi Hatef
School of Engineering, University of Warwick, CV4 7AL Coventry, United Kingdom.
Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands.
J Phys Chem Lett. 2022 Oct 6;13(39):9156-9164. doi: 10.1021/acs.jpclett.2c01851. Epub 2022 Sep 27.
Controlling charge transport through molecules is challenging because it requires engineering of the energy of molecular orbitals involved in the transport process. While side groups are central to maintaining solubility in many molecular materials, their role in modulating charge transport through single-molecule junctions has received less attention. Here, using two break-junction techniques and computational modeling, we investigate systematically the effect of electron-donating and -withdrawing side groups on the charge transport through single molecules. By characterizing the conductance and thermopower, we demonstrate that side groups can be used to manipulate energy levels of the transport orbitals. Furthermore, we develop a novel statistical approach to model quantum transport through molecular junctions. The proposed method does not treat the electrodes' chemical potential as a free parameter and leads to more robust prediction of electrical conductance as confirmed by our experiment. The new method is generic and can be used to predict the conductance of molecules.
控制分子中的电荷传输具有挑战性,因为这需要对传输过程中涉及的分子轨道能量进行工程设计。虽然侧基对于许多分子材料保持溶解性至关重要,但它们在调节单分子结中的电荷传输方面的作用却较少受到关注。在这里,我们使用两种断结技术和计算建模,系统地研究了供电子和吸电子侧基对单分子电荷传输的影响。通过表征电导和热电势,我们证明侧基可用于操纵传输轨道的能级。此外,我们开发了一种新颖的统计方法来模拟通过分子结的量子传输。所提出的方法不将电极的化学势视为自由参数,并如我们的实验所证实的那样,能对电导进行更可靠的预测。这种新方法具有通用性,可用于预测分子的电导。