CSIRO Mineral Resources, Australian Resources Research Centre, Kensington, Western Australia, Australia.
Department of Geological Sciences, Stanford University, Stanford, California, USA.
Geobiology. 2023 Jan;21(1):28-43. doi: 10.1111/gbi.12524. Epub 2022 Sep 27.
Manganese (Mn) oxidation in marine environments requires oxygen (O ) or other reactive oxygen species in the water column, and widespread Mn oxide deposition in ancient sedimentary rocks has long been used as a proxy for oxidation. The oxygenation of Earth's atmosphere and oceans across the Archean-Proterozoic boundary are associated with massive Mn deposits, whereas the interval from 1.8-1.0 Ga is generally believed to be a time of low atmospheric oxygen with an apparent hiatus in sedimentary Mn deposition. Here, we report geochemical and mineralogical analyses from 1.1 Ga manganiferous marine-shelf siltstones from the Bangemall Supergroup, Western Australia, which underlie recently discovered economically significant manganese deposits. Layers bearing Mn carbonate microspheres, comparable with major global Mn deposits, reveal that intense periods of sedimentary Mn deposition occurred in the late Mesoproterozoic. Iron geochemical data suggest anoxic-ferruginous seafloor conditions at the onset of Mn deposition, followed by oxic conditions in the water column as Mn deposition persisted and eventually ceased. These data imply there was spatially widespread surface oxygenation ~1.1 Ga with sufficiently oxic conditions in shelf environments to oxidize marine Mn(II). Comparable large stratiform Mn carbonate deposits also occur in ~1.4 Ga marine siltstones hosted in underlying sedimentary units. These deposits are greater or at least commensurate in scale (tonnage) to those that followed the major oxygenation transitions from the Neoproterozoic. Such a period of sedimentary manganogenesis is inconsistent with a model of persistently low O throughout the entirety of the Mesoproterozoic and provides robust evidence for dynamic redox changes in the mid to late Mesoproterozoic.
锰(Mn)在海洋环境中的氧化需要水中的氧气(O)或其他活性氧物质,而广泛存在的 Mn 氧化物沉积在古老的沉积岩中一直被用作氧化的代用指标。太古宙-元古宙边界地球大气和海洋的氧化与大量的 Mn 矿床有关,而 1.8-1.0 Ga 之间的间隔通常被认为是大气氧含量低的时期,沉积 Mn 沉积出现明显中断。在这里,我们报告了来自西澳大利亚邦加梅尔超群 1.1 Ga 锰质海洋陆架粉砂岩的地球化学和矿物学分析,该超群是最近发现的具有经济重要性的锰矿床的基底。含有 Mn 碳酸盐微球的层与主要的全球 Mn 矿床相当,表明在中元古代发生了强烈的沉积 Mn 沉积期。铁地球化学数据表明,Mn 沉积开始时存在缺氧-富铁海底条件,随后在水层中出现氧化条件,随着 Mn 沉积的持续进行并最终停止。这些数据表明,大约 1.1 Ga 时,空间上存在广泛的地表氧化,并且在陆架环境中具有足够的氧化条件来氧化海洋 Mn(II)。在下面的沉积单元中,也存在类似的 1.4 Ga 海洋粉砂岩中的大型层状 Mn 碳酸盐矿床。这些矿床的规模(吨位)与随后发生的从新元古代开始的主要氧化转变后的矿床相当或至少相当。这种沉积成锰作用的时期与中-新元古代整个时期持续低氧的模型不一致,并为中-新元古代中期和晚期的动态氧化还原变化提供了有力证据。