Suppr超能文献

中文老年人原发性非外伤性 OVCF 的危险因素研究及新型预测模型。

Study on Risk Factors of Primary Non-traumatic OVCF in Chinese Elderly and a Novel Prediction Model.

机构信息

Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.

Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.

出版信息

Orthop Surg. 2022 Nov;14(11):2925-2938. doi: 10.1111/os.13531. Epub 2022 Sep 28.

Abstract

OBJECTIVE

Prevention of fragility fractures is one of the public health priorities worldwide, whilst the incidence of osteoporotic vertebral compression fractures (OVCF) continues to rise and lacks the corresponding accurate prediction model. This study aimed to screen potential causes and risk factors for primary non-traumatic osteoporotic vertebral compression fractures (NTOVCF) in the elderly by characterizing a patient population with NTOVCF and comparing it with a population of osteoporotic patients.

METHODS

Between January 2013 and January 2022, 208 elderly patients with unequivocal evidence of bone fragility manifested as painful NTOVCF were enrolled, and compared with 220 patients with osteoporosis and no fractures. The demographic data, bone turnover markers, blood routine, serum biochemical values, and radiological findings were investigated. Differences between the fracture and non-fracture groups were analyzed, and variables significant in univariate analysis and correlation analysis were included in the logistic analysis to build the risk prediction model for osteoporotic vertebral fractures. Univariate analysis using student's t-tests for continuous variables or a chi-squared test for categorical variables was conducted to identify risk factors.

RESULTS

No significant differences were revealed regarding age, gender, BMI, smoking, alcohol consumption, blood glucose, propeptide of type I procollagen (P1NP), and N-terminal middle segment osteocalcin (N-MID) (P > 0.05). Parathyroid Hormone (PTH), 25(OH)D, serum albumin (ALB), hemoglobin (HB), bone mineral density (BMD), and cross-sectional area (CSA) of the paraspinal muscle in the fracture group were significantly lower than those in the control group; however, b-C-terminal telopeptide of type I collagen (β-CTX), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), non-prostatic acid phosphatase (NACP), and fatty degeneration ratio (FDR) were significantly higher than those in the control group (P < 0.05). Logistic regression analysis showed that ALB, HB, CSA, and BMD were negatively correlated with NTOVCF, while β-CTX, HDL-C, NACP, and FDR were positively correlated with NTOVCF.

CONCLUSION

Decreased physical activity, anemia, hypoproteinemia, imbalances in bone metabolism, abnormal lipid metabolism, and degenerative and decreased muscle mass, were all risk factors for OVCF in the elderly, spontaneous fractures may be the consequence of cumulative declines in multiple physiological systems over the lifespan. Based on this risk model, timely detection of patients with high OVCF risk and implementation of targeted preventive measures is expected to improve the effect of fracture prevention.

摘要

目的

预防脆性骨折是全球公共卫生的重点之一,而骨质疏松性椎体压缩骨折(OVCF)的发病率持续上升,却缺乏相应的准确预测模型。本研究旨在通过对原发性非外伤性骨质疏松性椎体压缩骨折(NTOVCF)患者进行特征描述,并与骨质疏松患者进行比较,以筛选出老年 NTOVCF 的潜在病因和危险因素。

方法

2013 年 1 月至 2022 年 1 月,共纳入 208 例明确有骨脆性表现为疼痛性 NTOVCF 的老年患者,并与 220 例骨质疏松症且无骨折的患者进行比较。调查了患者的人口统计学数据、骨转换标志物、血常规、血清生化值和影像学发现。分析了骨折组和非骨折组之间的差异,并将单因素分析和相关性分析有意义的变量纳入逻辑分析,以建立骨质疏松性椎体骨折的风险预测模型。采用学生 t 检验进行连续变量的单因素分析,或卡方检验进行分类变量的单因素分析,以确定危险因素。

结果

两组在年龄、性别、BMI、吸烟、饮酒、血糖、I 型前胶原氨基端肽(P1NP)和 N 端中段骨钙素(N-MID)方面无显著差异(P>0.05)。与对照组相比,骨折组甲状旁腺激素(PTH)、25(OH)D、血清白蛋白(ALB)、血红蛋白(HB)、骨密度(BMD)和脊柱旁肌横截面积(CSA)明显降低,而 I 型胶原β-末端肽(β-CTX)、总胆固醇(TC)、高密度脂蛋白胆固醇(HDL-C)、非前列腺酸性磷酸酶(NACP)和脂肪变性率(FDR)明显升高(P<0.05)。逻辑回归分析显示,ALB、HB、CSA 和 BMD 与 NTOVCF 呈负相关,而β-CTX、HDL-C、NACP 和 FDR 与 NTOVCF 呈正相关。

结论

体力活动减少、贫血、低蛋白血症、骨代谢失衡、脂质代谢异常以及退行性和肌肉量减少,都是老年人 OVCF 的危险因素,自发性骨折可能是多个生理系统在一生中逐渐衰退的结果。基于该风险模型,及时发现 OVCF 高危患者并实施有针对性的预防措施,有望提高骨折预防效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a29/9627056/446931d6fff2/OS-14-2925-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验