Suppr超能文献

整合脊柱肌肉骨骼系统参数以预测老年人骨质疏松性椎体压缩骨折:一种综合预测模型。

Integration of Spinal Musculoskeletal System Parameters for Predicting OVCF in the Elderly: A Comprehensive Predictive Model.

作者信息

Wang Song, Zhang Xin, Zheng Junyong, Chen Guoliang, Jiao Genlong, Peng Songlin

机构信息

Department of Orthopedic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.

Dongguan Key Laboratory of Central Nervous System Injury and Repair, Department of Orthopedic Surgery, The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Dongguan, China.

出版信息

Global Spine J. 2025 May;15(4):1966-1975. doi: 10.1177/21925682241274371. Epub 2024 Aug 12.

Abstract

Study DesignSystematic literature review.ObjectivesTo develop a predictive model for osteoporotic vertebral compression fractures (OVCF) in the elderly, utilizing current tools that are sensitive to bone and paraspinal muscle changes.MethodsA retrospective analysis of data from 260 patients from October 2020 to December 2022, to form the Model population. This group was split into Training and Testing sets. The Training set aided in creating a nomogram through binary logistic regression. From January 2023 to January 2024, we prospectively collected data from 106 patients to constitute the Validation population. The model's performance was evaluated using concordance index (C-index), calibration curves, and decision curve analysis (DCA) for both internal and external validation.ResultsThe study included 366 patients. The Training and Testing sets were used for nomogram construction and internal validation, while the prospectively collected data was for external validation. Binary logistic regression identified nine independent OVCF risk factors: age, bone mineral density (BMD), quantitative computed tomography (QCT), vertebral bone quality (VBQ), relative functional cross-sectional area of psoas muscles (rFCSA), gross and functional muscle fat infiltration of multifidus and psoas muscles (GMFI and FMFI), FMFI, and mean muscle ratio. The nomogram showed an area under the curve (AUC) of 0.91 for the C-index, with internal and external validation AUCs of 0.90 and 0.92. Calibration curves and DCA indicated a good model fit.ConclusionsThis study identified nine factors as independent predictors of OVCF in the elderly. A nomogram including these factors was developed, proving effective for OVCF prediction.

摘要

研究设计

系统文献综述。

目的

利用对骨骼和椎旁肌肉变化敏感的现有工具,开发一种预测老年人骨质疏松性椎体压缩骨折(OVCF)的模型。

方法

对2020年10月至2022年12月期间260例患者的数据进行回顾性分析,以形成模型人群。该组被分为训练集和测试集。训练集通过二元逻辑回归辅助创建列线图。2023年1月至2024年1月,我们前瞻性收集了106例患者的数据,以构成验证人群。使用一致性指数(C指数)、校准曲线和决策曲线分析(DCA)对模型性能进行内部和外部验证。

结果

该研究纳入了366例患者。训练集和测试集用于列线图构建和内部验证,而前瞻性收集的数据用于外部验证。二元逻辑回归确定了9个独立的OVCF危险因素:年龄、骨密度(BMD)、定量计算机断层扫描(QCT)、椎体骨质量(VBQ)、腰大肌相对功能横截面积(rFCSA)、多裂肌和腰大肌的总体和功能肌肉脂肪浸润(GMFI和FMFI)、FMFI和平均肌肉比率。列线图的C指数曲线下面积(AUC)为0.91,内部和外部验证的AUC分别为0.90和0.92。校准曲线和DCA表明模型拟合良好。

结论

本研究确定了9个因素为老年人OVCF的独立预测因素。开发了一个包含这些因素的列线图,证明对OVCF预测有效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验