Suppr超能文献

剪切载荷作用下骨-植入物界面应力屏蔽的力学微观建模。

Mechanical micromodeling of stress-shielding at the bone-implant interphase under shear loading.

作者信息

Hériveaux Yoann, Le Cann Sophie, Fraulob Manon, Vennat Elsa, Nguyen Vu-Hieu, Haïat Guillaume

机构信息

Université Paris-Saclay, ENS Paris-Saclay, CentraleSupélec, CNRS, LMPS - Laboratoire de Mécanique Paris-Saclay, 91190, Gif-sur-Yvette, France.

CNRS, Univ Paris Est Creteil, Univ Gustave Eiffel, UMR 8208, MSME, F-94010, Créteil, France.

出版信息

Med Biol Eng Comput. 2022 Nov;60(11):3281-3293. doi: 10.1007/s11517-022-02657-2. Epub 2022 Sep 28.

Abstract

Inserting a titanium implant in the bone tissue may modify its physiological loading and therefore cause bone resorption, via a phenomenon called stress-shielding. The local stress field around the bone-implant interphase (BII) created under shear loading may be influenced by different parameters such as the bone-implant contact (BIC) ratio, the bone Young's modulus, the implant roughness and the implant material. A 2-D finite element model was developed to model the BII and evaluate the impact of the aforementioned parameters. The implant roughness was described by a sinusoidal function (height 2Δ, wavelength λ), and different values of the BIC ratio were simulated. A heterogeneous distribution of the maximum shear stress was evidenced in the periprosthetic bone tissue, with high interfacial stress for low BIC ratios and low implant roughness and underloaded regions near the roughness valleys. Both phenomena may lead to stress-shielding-related effects, which were concentrated within a distance lower than 0.8λ from the implant surface. Choosing an implant material with mechanical properties matching those of bone tissue leads to a homogenized shear stress field and could help to prevent stress-shielding effects. Finally, the equivalent shear modulus of the BII was derived to replace its complex behavior with a simpler analytical model in future studies. Schematic illustrations of the 2-D finite element model used in the present study and spatial variation of the maximal shear stress in the periprosthetic bone tissue for different implant roughness and bone-implant contact ratios.

摘要

在骨组织中植入钛植入物可能会改变其生理负荷,进而通过一种称为应力屏蔽的现象导致骨吸收。在剪切载荷作用下,骨-植入物界面(BII)周围的局部应力场可能会受到不同参数的影响,如骨-植入物接触(BIC)比率、骨杨氏模量、植入物粗糙度和植入物材料。建立了一个二维有限元模型来模拟BII并评估上述参数的影响。植入物粗糙度用正弦函数(高度2Δ,波长λ)描述,并模拟了不同的BIC比率值。在假体周围的骨组织中证实了最大剪切应力的非均匀分布,对于低BIC比率、低植入物粗糙度以及粗糙度谷附近的低负荷区域,界面应力较高。这两种现象都可能导致与应力屏蔽相关的效应,这些效应集中在距植入物表面小于0.8λ的距离内。选择一种机械性能与骨组织相匹配的植入物材料会导致剪切应力场均匀化,并有助于防止应力屏蔽效应。最后,推导了BII的等效剪切模量,以便在未来的研究中用一个更简单的分析模型来替代其复杂行为。本研究中使用的二维有限元模型的示意图以及不同植入物粗糙度和骨-植入物接触比率下假体周围骨组织中最大剪切应力的空间变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验