Ceddia Mario, Marchioli Giulia, Romasco Tea, Comuzzi Luca, Piattelli Adriano, Deporter Douglas A, Di Pietro Natalia, Trentadue Bartolomeo
Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, 70125 Bari, Italy.
Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy.
Materials (Basel). 2025 Jul 16;18(14):3344. doi: 10.3390/ma18143344.
Optimizing stress distribution at the bone-implant interface is critical to enhancing the long-term biomechanical performance of dental implant systems. Vertical misalignment between splinted implants can result in elevated localized stresses, increasing the risk of material degradation and peri-implant bone resorption. This study employs three-dimensional finite element analysis (FEA) to evaluate the mechanical response of peri-implant bone under oblique loading, focusing on how variations in vertical implant platform alignment influence stress transmission. Four implant configurations with different vertical placements were modeled: (A) all crestal, (B) central subcrestal with lateral crestal, (C) lateral subcrestal with central crestal, and (D) all subcrestal. A 400 N oblique load was applied at 45° simulated masticatory forces. Von Mises stress distributions were analyzed in both cortical and trabecular bone, with a physiological threshold of 100 MPa considered for cortical bone. Among the models, configuration B exhibited the highest cortical stress, exceeding the physiological threshold. In contrast, configurations with uniform vertical positioning, particularly model D, demonstrated more favorable stress dispersion and lower peak values. Stress concentrations were consistently observed at the implant-abutment interface across all configurations, identifying this area as critical for design improvements. These findings underscore the importance of precise vertical alignment in implant-supported restorations to minimize stress concentrations and improve the mechanical reliability of dental implants. The results provide valuable insights for the development of next-generation implant systems with enhanced biomechanical integration and material performance under functional loading.
优化骨-种植体界面的应力分布对于提高牙种植系统的长期生物力学性能至关重要。夹板式种植体之间的垂直错位会导致局部应力升高,增加材料降解和种植体周围骨吸收的风险。本研究采用三维有限元分析(FEA)来评估倾斜加载下种植体周围骨的力学响应,重点关注垂直种植体平台对齐方式的变化如何影响应力传递。对四种具有不同垂直位置的种植体配置进行了建模:(A)全部位于嵴顶,(B)中央位于嵴下且外侧位于嵴顶,(C)外侧位于嵴下且中央位于嵴顶,以及(D)全部位于嵴下。在45°方向施加400 N的倾斜载荷以模拟咀嚼力。分析了皮质骨和松质骨中的冯·米塞斯应力分布,皮质骨的生理阈值设定为100 MPa。在这些模型中,配置B表现出最高的皮质应力,超过了生理阈值。相比之下,垂直定位均匀的配置,特别是模型D,显示出更有利的应力分散和更低的峰值。在所有配置的种植体-基台界面均持续观察到应力集中,表明该区域对于设计改进至关重要。这些发现强调了种植体支持修复中精确垂直对齐的重要性,以最小化应力集中并提高牙种植体的机械可靠性。研究结果为开发下一代在功能载荷下具有增强生物力学整合和材料性能的种植系统提供了有价值的见解。