Suppr超能文献

利用MethylBoostER准确检测良性和恶性肾肿瘤亚型:一种表观遗传标记驱动的学习框架。

Accurate detection of benign and malignant renal tumor subtypes with MethylBoostER: An epigenetic marker-driven learning framework.

作者信息

Rossi Sabrina H, Newsham Izzy, Pita Sara, Brennan Kevin, Park Gahee, Smith Christopher G, Lach Radoslaw P, Mitchell Thomas, Huang Junfan, Babbage Anne, Warren Anne Y, Leppert John T, Stewart Grant D, Gevaert Olivier, Massie Charles E, Samarajiwa Shamith A

机构信息

Department of Oncology, University of Cambridge, Hutchison-MRC Research Centre, Cambridge Biomedical Campus, Cambridge, UK.

Early Cancer Institute, Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, UK.

出版信息

Sci Adv. 2022 Sep 30;8(39):eabn9828. doi: 10.1126/sciadv.abn9828. Epub 2022 Sep 28.

Abstract

Current gold standard diagnostic strategies are unable to accurately differentiate malignant from benign small renal masses preoperatively; consequently, 20% of patients undergo unnecessary surgery. Devising a more confident presurgical diagnosis is key to improving treatment decision-making. We therefore developed MethylBoostER, a machine learning model leveraging DNA methylation data from 1228 tissue samples, to classify pathological subtypes of renal tumors (benign oncocytoma, clear cell, papillary, and chromophobe RCC) and normal kidney. The prediction accuracy in the testing set was 0.960, with class-wise ROC AUCs >0.988 for all classes. External validation was performed on >500 samples from four independent datasets, achieving AUCs >0.89 for all classes and average accuracies of 0.824, 0.703, 0.875, and 0.894 for the four datasets. Furthermore, consistent classification of multiregion samples ( = 185) from the same patient demonstrates that methylation heterogeneity does not limit model applicability. Following further clinical studies, MethylBoostER could facilitate a more confident presurgical diagnosis to guide treatment decision-making in the future.

摘要

当前的金标准诊断策略无法在术前准确区分恶性和良性小肾肿块;因此,20%的患者接受了不必要的手术。设计出更可靠的术前诊断方法是改善治疗决策的关键。因此,我们开发了MethylBoostER,这是一种利用1228个组织样本的DNA甲基化数据的机器学习模型,用于对肾肿瘤的病理亚型(良性嗜酸性细胞瘤、透明细胞、乳头状和嫌色性肾细胞癌)和正常肾脏进行分类。测试集中的预测准确率为0.960,所有类别的类特异性ROC曲线下面积>0.988。对来自四个独立数据集的500多个样本进行了外部验证,所有类别的曲线下面积>0.89,四个数据集的平均准确率分别为0.824、0.703、0.875和0.894。此外,对同一患者的多区域样本(n = 185)进行的一致分类表明,甲基化异质性并不限制模型的适用性。经过进一步的临床研究,MethylBoostER未来可能有助于做出更可靠的术前诊断,以指导治疗决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acda/9519038/ecd9e274bee4/sciadv.abn9828-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验