Suppr超能文献

用于类别感知跨主体和跨会话脑电图情感识别的动态域适应

Dynamic Domain Adaptation for Class-Aware Cross-Subject and Cross-Session EEG Emotion Recognition.

作者信息

Li Zhunan, Zhu Enwei, Jin Ming, Fan Cunhang, He Huiguang, Cai Ting, Li Jinpeng

出版信息

IEEE J Biomed Health Inform. 2022 Dec;26(12):5964-5973. doi: 10.1109/JBHI.2022.3210158. Epub 2022 Dec 7.

Abstract

It is vital to develop general models that can be shared across subjects and sessions in the real-world deployment of electroencephalogram (EEG) emotion recognition systems. Many prior studies have exploited domain adaptation algorithms to alleviate the inter-subject and inter-session discrepancies of EEG distributions. However, these methods only aligned the global domain divergence, but overlooked the local domain divergence with respect to each emotion category. This degenerates the emotion-discriminating ability of the domain invariant features. In this paper, we argue that aligning the EEG data within the same emotion categories is important for generalizable and discriminative features. Hence, we propose the dynamic domain adaptation (DDA) algorithm where the global and local divergences are disposed by minimizing the global domain discrepancy and local subdomain discrepancy, respectively. To tackle the absence of emotion labels in the target domain, we introduce a dynamic training strategy where the model focuses on optimizing the global domain discrepancy in the early training steps, and then gradually switches to the local subdomain discrepancy. The DDA algorithm is formally implemented as an unsupervised version and a semi-supervised version for different experimental settings. Based on the coarse-to-fine alignment, our model achieves the average peak accuracy of 91.08%, 92.89% on SEED, and 81.58%, 80.82% on SEED-IV in the cross-subject and cross-session scenarios, respectively.

摘要

在脑电图(EEG)情感识别系统的实际部署中,开发能够跨主体和跨会话共享的通用模型至关重要。许多先前的研究利用域适应算法来减轻脑电图分布的主体间和会话间差异。然而,这些方法仅对齐了全局域差异,却忽略了每个情感类别方面的局部域差异。这降低了域不变特征的情感辨别能力。在本文中,我们认为在相同情感类别内对齐脑电图数据对于可泛化和有辨别力的特征很重要。因此,我们提出了动态域适应(DDA)算法,其中通过分别最小化全局域差异和局部子域差异来处理全局和局部差异。为了解决目标域中缺乏情感标签的问题,我们引入了一种动态训练策略,即模型在早期训练步骤中专注于优化全局域差异,然后逐渐转向局部子域差异。DDA算法正式实现为针对不同实验设置的无监督版本和半监督版本。基于从粗到细的对齐,我们的模型在跨主体和跨会话场景中,在SEED上分别实现了91.08%、92.89%的平均峰值准确率,在SEED-IV上分别实现了81.58%、80.82%的平均峰值准确率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验