IEEE Trans Neural Syst Rehabil Eng. 2024;32:1637-1646. doi: 10.1109/TNSRE.2024.3389037. Epub 2024 Apr 22.
Affective brain-computer interfaces (aBCIs) have garnered widespread applications, with remarkable advancements in utilizing electroencephalogram (EEG) technology for emotion recognition. However, the time-consuming process of annotating EEG data, inherent individual differences, non-stationary characteristics of EEG data, and noise artifacts in EEG data collection pose formidable challenges in developing subject-specific cross-session emotion recognition models. To simultaneously address these challenges, we propose a unified pre-training framework based on multi-scale masked autoencoders (MSMAE), which utilizes large-scale unlabeled EEG signals from multiple subjects and sessions to extract noise-robust, subject-invariant, and temporal-invariant features. We subsequently fine-tune the obtained generalized features with only a small amount of labeled data from a specific subject for personalization and enable cross-session emotion recognition. Our framework emphasizes: 1) Multi-scale representation to capture diverse aspects of EEG signals, obtaining comprehensive information; 2) An improved masking mechanism for robust channel-level representation learning, addressing missing channel issues while preserving inter-channel relationships; and 3) Invariance learning for regional correlations in spatial-level representation, minimizing inter-subject and inter-session variances. Under these elaborate designs, the proposed MSMAE exhibits a remarkable ability to decode emotional states from a different session of EEG data during the testing phase. Extensive experiments conducted on the two publicly available datasets, i.e., SEED and SEED-IV, demonstrate that the proposed MSMAE consistently achieves stable results and outperforms competitive baseline methods in cross-session emotion recognition.
情感脑机接口 (aBCI) 已经得到了广泛的应用,利用脑电图 (EEG) 技术进行情感识别方面取得了显著的进展。然而,EEG 数据标注的耗时过程、固有的个体差异、EEG 数据的非平稳特征以及 EEG 数据采集过程中的噪声伪影,给开发特定于个体的跨会话情感识别模型带来了巨大的挑战。为了同时应对这些挑战,我们提出了一种基于多尺度掩蔽自动编码器 (MSMAE) 的统一预训练框架,该框架利用来自多个主体和会话的大规模未标记 EEG 信号来提取抗噪、主体不变和时间不变的特征。然后,我们仅使用特定主体的少量标记数据对获得的广义特征进行微调,以实现个性化并实现跨会话情感识别。我们的框架强调:1) 多尺度表示,以捕获 EEG 信号的多个方面,获取全面的信息;2) 改进的掩蔽机制,用于稳健的通道级表示学习,解决了丢失通道的问题,同时保留了通道之间的关系;3) 空间级表示的区域相关性不变学习,最小化了主体间和会话间的方差。在这些精心设计的条件下,所提出的 MSMAE 在测试阶段能够从不同的 EEG 数据会话中解码情感状态,表现出了显著的能力。在两个公开可用的数据集,即 SEED 和 SEED-IV 上进行的广泛实验表明,所提出的 MSMAE 在跨会话情感识别中始终能够实现稳定的结果,并优于竞争基准方法。