Suppr超能文献

电化学高级氧化法处理全氟辛酸:动力学建模下的机制与工艺优化。

Electrochemical Advanced Oxidation of Perfluorooctanoic Acid: Mechanisms and Process Optimization with Kinetic Modeling.

机构信息

Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30308, United States.

CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China.

出版信息

Environ Sci Technol. 2022 Oct 18;56(20):14409-14417. doi: 10.1021/acs.est.2c02906. Epub 2022 Sep 29.

Abstract

Electrochemical advanced oxidation processes (EAOPs) are promising technologies for perfluorooctanoic acid (PFOA) degradation, but the mechanisms and preferred pathways for PFOA mineralization remain unknown. Herein, we proposed a plausible primary pathway for electrochemical PFOA mineralization using density functional theory (DFT) simulations and experiments. We neglected the unique effects of the anode surface and treated anodes as electron sinks only to acquire a general pathway. This was the essential first step toward fully revealing the primary pathway applicable to all anodes. Systematically exploring the roles of valence band holes (h), hydroxyl radicals (HO), and HO, we found that h, whose contribution was previously underestimated, dominated PFOA mineralization. Notably, the primary pathway did not generate short-chain perfluoroalkyl carboxylic acids (PFCAs), which were previously thought to be the main degradation intermediates, but generated other polyfluorinated alkyl substances (PFASs) that were rapidly degraded upon formation. Also, we developed a simplified kinetic model, which considered all of the main processes (mass transfer with electromigration included, surface adsorption/desorption, and oxidation on the anode surface), to simulate PFOA degradation in EAOPs. Our model can predict PFOA concentration profiles under various current densities, initial PFOA concentrations, and flow velocities.

摘要

电化学高级氧化工艺(EAOPs)是降解全氟辛酸(PFOA)的有前途的技术,但 PFOA 矿化的机制和首选途径仍不清楚。在此,我们使用密度泛函理论(DFT)模拟和实验提出了电化学 PFOA 矿化的一种可能的主要途径。我们忽略了阳极表面的独特影响,仅将阳极视为电子汇来获得一般途径。这是完全揭示适用于所有阳极的主要途径的重要第一步。系统地探索价带空穴(h)、羟基自由基(HO)和 HO 的作用,我们发现 h 主导着 PFOA 矿化,其贡献以前被低估。值得注意的是,主要途径并未产生短链全氟烷基羧酸(PFCAs),以前认为它们是主要的降解中间体,而是生成了其他在形成后迅速降解的多氟烷基物质(PFASs)。此外,我们开发了一个简化的动力学模型,该模型考虑了所有主要过程(包括电迁移的传质、表面吸附/解吸以及阳极表面的氧化),以模拟 EAOPs 中的 PFOA 降解。我们的模型可以预测各种电流密度、初始 PFOA 浓度和流速下的 PFOA 浓度分布。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验