MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
Environ Sci Technol. 2023 Jun 27;57(25):9416-9425. doi: 10.1021/acs.est.3c02025. Epub 2023 Jun 9.
Electrochemical oxidation (EO) has been shown to have the unique ability to degrade perfluorooctanoic acid (PFOA), although the radical chemistry involved in this degradation is unclear, particularly in the presence of chloride ions (Cl). In this study, reaction kinetics, free radical quenching, electron spin resonance, and radical probes were used to examine the roles of ·OH and reactive chlorine species (RCS, including Cl·, Cl, and ClO·) in the EO of PFOA. Using EO in the presence of NaCl, PFOA degradation rates of 89.4%-94.9% and defluorination rates of 38.7%-44.1% were achieved after 480 min with PFOA concentrations ranging from 2.4 to 240 μM. The degradation occurred via the synergistic effect of ·OH and Cl· rather than through direct anodic oxidation. The degradation products and density functional theory (DFT) calculations revealed that Cl· triggered the first step of the reaction, thus the initial direct electron transfer was not the rate-limiting step of PFOA degradation. The change in Gibbs free energy of the reaction caused by Cl· was 65.57 kJ mol, which was more than two times lower than that triggered by ·OH. However, ·OH was involved in the subsequent degradation of PFOA. The synergistic effect of Cl· and ·OH in PFOA degradation is demonstrated for the first time in this study, which is promising for the development of electrochemical technology to remove perfluorinated alkyl substances from the environment.
电化学氧化 (EO) 已被证明具有独特的降解全氟辛酸 (PFOA) 的能力,尽管这种降解过程中涉及的自由基化学仍不清楚,尤其是在存在氯离子 (Cl) 的情况下。在这项研究中,使用反应动力学、自由基猝灭、电子自旋共振和自由基探针来研究·OH 和活性氯物种 (RCS,包括 Cl·、Cl 和 ClO·) 在 PFOA 的 EO 中的作用。在存在 NaCl 的情况下进行 EO,当 PFOA 浓度在 2.4 到 240 μM 之间时,经过 480 min 可实现 89.4%-94.9%的 PFOA 降解率和 38.7%-44.1%的脱氟率。降解是通过·OH 和 Cl·的协同作用发生的,而不是通过直接阳极氧化。降解产物和密度泛函理论 (DFT) 计算表明,Cl·引发了反应的第一步,因此初始直接电子转移不是 PFOA 降解的限速步骤。Cl·引起的反应吉布斯自由能变化为 65.57 kJ mol,比·OH 引起的变化低两倍多。然而,·OH 参与了随后的 PFOA 降解。本研究首次证明了 Cl·和·OH 在 PFOA 降解中的协同作用,这为开发电化学技术从环境中去除全氟烷基物质提供了希望。