T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA.
Institute for Quantum Information and Matter, Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA.
Science. 2022 Sep 30;377(6614):1538-1543. doi: 10.1126/science.abn8585. Epub 2022 Sep 29.
Graphene moiré superlattices show an abundance of correlated insulating, topological, and superconducting phases. Whereas the origins of strong correlations and nontrivial topology can be directly linked to flat bands, the nature of superconductivity remains enigmatic. We demonstrate that magic-angle devices made of twisted tri-, quadri-, and pentalayer graphene placed on monolayer tungsten diselenide exhibit flavor polarization and superconductivity. We also observe insulating states in the tril- and quadrilayer arising at finite electric displacement fields. As the number of layers increases, superconductivity emerges over an enhanced filling-factor range, and in the pentalayer it extends well beyond the filling of four electrons per moiré unit cell. Our results highlight the role of the interplay between flat and more dispersive bands in extending superconducting regions in graphene moiré superlattices.
石墨烯摩尔超晶格表现出丰富的关联绝缘、拓扑和超导相。虽然强关联和非平凡拓扑的起源可以直接与平带相关联,但超导性的本质仍然是神秘的。我们证明了由扭曲的三层、四层和五层层状石墨烯置于单层二硒化钨上制成的魔术角器件表现出了各向异性极化和超导性。我们还观察到在有限的电位移场中,三层和四层石墨烯会出现绝缘状态。随着层数的增加,超导性出现在增强的填充因子范围内,在五层层状石墨烯中,超导性远远超出了每个摩尔超晶格单元四个电子的填充。我们的结果强调了平带和更分散带之间相互作用在扩展石墨烯摩尔超晶格超导区域中的作用。