Suppr超能文献

开发用于 ASD 儿童的互动式全身机器人增强模仿疗法。

Development of an Interactive Total Body Robot Enhanced Imitation Therapy for ASD children.

出版信息

IEEE Int Conf Rehabil Robot. 2022 Jul;2022:1-6. doi: 10.1109/ICORR55369.2022.9896536.

Abstract

Autism is a neurodevelopmental disorder in which the available therapies target the improvement of social skills, in order to ensure a high quality of life for the child. The use of Social Assistive Robots offers new therapeutic possibilities in which robots can act as therapy enhancers. IOGIOCO project emerges in this framework: it aims at the development of a Robot- Assisted Therapy protocol for the treatment of Autism Spectrum Disorder, through gesture training. The definition of these gestures and their recognition by the robot are parameters that directly affect the engagement of the children. However, the design of a protocol becomes harder in a highly unconstrained environment. Therefore, the current work aims at expanding the gesture set and improving the gesture recognition algorithm available in the IOGIOCO platform. More specifically, total body gestures have been added to the available upper limbs movements, and a custom Activity Detection method has been developed, which allows the identification of the time window in which a gesture is performed. The insertion of this method on a recognition algorithm based on a ResNet, a particular kind of Convolutional Neural Network, improved its F1-score from 57% obtained with the previously-available version, in a dataset of ASD children, to 76%, demonstrating the effectiveness of the Activity Detection method. Furthermore, the expansion of the interaction possibilities to total body movements was positively evaluated by the clinical staff, increasing the engagement of patients and the set of possible trained skills. Therefore, the results of the current work are encouraging. To reinforce the conclusions drawn, the proposed algorithm should be tested in real time on several autistic children within a complete Randomized Clinical Trial, also to study the effectiveness of this type of treatment. From the technical point of view, further improvements of the developed methodology should tackle the remained issues, such as further increasing the recognition capability, especially in the transitions from sitting to standing, that proved to be a hard task for the developed method.

摘要

自闭症是一种神经发育障碍,现有的治疗方法旨在提高社交技能,以确保儿童的生活质量。使用社交辅助机器人为治疗提供了新的可能性,机器人可以作为治疗的增强手段。IOGIOCO 项目就是在此背景下产生的:它旨在通过手势训练开发一种用于治疗自闭症谱系障碍的机器人辅助治疗协议。这些手势的定义及其被机器人识别是直接影响儿童参与度的参数。然而,在高度非约束环境中设计协议变得更加困难。因此,目前的工作旨在扩展手势集并改进 IOGIOCO 平台中现有的手势识别算法。具体来说,除了现有的上肢运动之外,还添加了全身运动,并且开发了一种自定义的活动检测方法,该方法允许识别执行手势的时间窗口。将此方法插入基于 ResNet(一种特殊的卷积神经网络)的识别算法中,将其在自闭症儿童数据集上的 F1 分数从之前版本的 57%提高到 76%,证明了活动检测方法的有效性。此外,通过临床工作人员对全身运动交互可能性的扩展评估,增加了患者的参与度和可训练技能的数量。因此,当前工作的结果是令人鼓舞的。为了加强得出的结论,应该在完整的随机临床试验中对几个自闭症儿童实时测试所提出的算法,以研究这种治疗方法的有效性。从技术角度来看,进一步改进所开发的方法应该解决遗留问题,例如进一步提高识别能力,尤其是在从坐姿到站姿的过渡过程中,这对于所开发的方法来说是一个难题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验