Suppr超能文献

基于双通道深度学习模型的中国艺术作品风格迁移。

Style Transfer of Chinese Art Works Based on Dual Channel Deep Learning Model.

机构信息

College of Art of Jiujiang University, Jiujiang, Jiangxi Province 332005, China.

出版信息

Comput Intell Neurosci. 2022 Sep 20;2022:4376006. doi: 10.1155/2022/4376006. eCollection 2022.

Abstract

Aiming at the problems of style loss and lack of content in the style transfer of Chinese art works, this paper puts forward the style transfer technology of Chinese art works based on the dual channel deep learning model. On the basis of clarifying the technical principle of style transfer of art works, the image of art works is controlled and transformed based on the u-net network. The incomplete information in the restored image is filled, and the multiscale classification feature is used to calculate the color feature data items in the image. The sensitivity coefficient of color difference is calculated by using constraints, and the overlapping color discrimination and image segmentation of art images are realized. Poisson image editing is used to constrain the image spatial gradient to realize the style migration of art works. The experimental results show that this method can effectively avoid the problems of content error, distortion, and distortion in the process of art style migration, and has a better style migration effect.

摘要

针对中文艺术作品风格迁移中存在的风格丢失和内容缺失的问题,本文提出了一种基于双通道深度学习模型的中文艺术作品风格迁移技术。在阐明艺术作品风格迁移技术的技术原理的基础上,基于 u-net 网络对艺术作品的图像进行控制和变换,对恢复图像中的不完整信息进行填充,并利用多尺度分类特征计算图像中的颜色特征数据项。利用约束计算颜色差的灵敏度系数,实现艺术图像的重叠颜色判别和图像分割。使用泊松图像编辑约束图像空间梯度,实现艺术作品的风格迁移。实验结果表明,该方法能够有效避免艺术风格迁移过程中内容错误、失真和变形的问题,具有更好的风格迁移效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a05/9514931/e8b63aec9728/CIN2022-4376006.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验