Suppr超能文献

一种具有低图像失真的多反转多回波自旋和梯度回波回波平面成像序列,用于快速定量参数映射和合成图像对比。

A multi-inversion multi-echo spin and gradient echo echo planar imaging sequence with low image distortion for rapid quantitative parameter mapping and synthetic image contrasts.

作者信息

Manhard Mary Kate, Stockmann Jason, Liao Congyu, Park Daniel, Han Sohyun, Fair Merlin, van den Boomen Maaike, Polimeni Jon, Bilgic Berkin, Setsompop Kawin

机构信息

Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.

Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

Magn Reson Med. 2021 Aug;86(2):866-880. doi: 10.1002/mrm.28761. Epub 2021 Mar 25.

Abstract

PURPOSE

Brain imaging exams typically take 10-20 min and involve multiple sequential acquisitions. A low-distortion whole-brain echo planar imaging (EPI)-based approach was developed to efficiently encode multiple contrasts in one acquisition, allowing for calculation of quantitative parameter maps and synthetic contrast-weighted images.

METHODS

Inversion prepared spin- and gradient-echo EPI was developed with slice-order shuffling across measurements for efficient acquisition with T , T , and weighting. A dictionary-matching approach was used to fit the images to quantitative parameter maps, which in turn were used to create synthetic weighted images with typical clinical contrasts. Dynamic slice-optimized multi-coil shimming with a B shim array was used to reduce B inhomogeneity and, therefore, image distortion by >50%. Multi-shot EPI was also implemented to minimize distortion and blurring while enabling high in-plane resolution. A low-rank reconstruction approach was used to mitigate errors from shot-to-shot phase variation.

RESULTS

The slice-optimized shimming approach was combined with in-plane parallel-imaging acceleration of 4× to enable single-shot EPI with more than eight-fold distortion reduction. The proposed sequence efficiently obtained 40 contrasts across the whole-brain in just over 1 min at 1.2 × 1.2 × 3 mm resolution. The multi-shot variant of the sequence achieved higher in-plane resolution of 1 × 1 × 4 mm with good image quality in 4 min. Derived quantitative maps showed comparable values to conventional mapping methods.

CONCLUSION

The approach allows fast whole-brain imaging with quantitative parameter maps and synthetic weighted contrasts. The slice-optimized multi-coil shimming and multi-shot reconstruction approaches result in minimal EPI distortion, giving the sequence the potential to be used in rapid screening applications.

摘要

目的

脑部成像检查通常需要10 - 20分钟,且涉及多次连续采集。开发了一种基于低失真全脑回波平面成像(EPI)的方法,以在一次采集中有效编码多种对比度,从而能够计算定量参数图和合成对比度加权图像。

方法

开发了反转准备的自旋和梯度回波EPI,并在测量过程中进行切片顺序重排,以实现对T1、T2和质子密度加权的高效采集。采用字典匹配方法将图像拟合到定量参数图,进而用于创建具有典型临床对比度的合成加权图像。使用带有B0匀场阵列的动态切片优化多线圈匀场来减少B0不均匀性,从而将图像失真降低50%以上。还实施了多次激发EPI,以在实现高平面分辨率的同时最小化失真和模糊。采用低秩重建方法来减轻逐次激发相位变化带来的误差。

结果

切片优化匀场方法与4倍的平面并行成像加速相结合,实现了单次激发EPI,失真降低了8倍以上。所提出的序列在1.2×1.2×3毫米分辨率下,仅用1分钟多一点的时间就能在全脑有效获得40种对比度。该序列的多次激发变体在4分钟内实现了1×1×4毫米的更高平面分辨率,且图像质量良好。导出的定量图显示的值与传统映射方法相当。

结论

该方法允许进行具有定量参数图和合成加权对比度的快速全脑成像。切片优化的多线圈匀场和多次激发重建方法使EPI失真最小化,使该序列有潜力用于快速筛查应用。

相似文献

2
Echo planar time-resolved imaging (EPTI).
Magn Reson Med. 2019 Jun;81(6):3599-3615. doi: 10.1002/mrm.27673. Epub 2019 Feb 3.
3
Simultaneous T, T and T mapping of the liver with multi-shot MI-SAGE.
Magn Reson Imaging. 2024 Jan;105:75-81. doi: 10.1016/j.mri.2023.11.004. Epub 2023 Nov 7.
7
Streamlined magnetic resonance fingerprinting: Fast whole-brain coverage with deep-learning based parameter estimation.
Neuroimage. 2021 Sep;238:118237. doi: 10.1016/j.neuroimage.2021.118237. Epub 2021 Jun 5.
9
BUDA-MESMERISE: Rapid acquisition and unsupervised parameter estimation for T , T , M , B , and B maps.
Magn Reson Med. 2022 Jul;88(1):292-308. doi: 10.1002/mrm.29228. Epub 2022 Mar 28.
10
Distortion-free, high-isotropic-resolution diffusion MRI with gSlider BUDA-EPI and multicoil dynamic B shimming.
Magn Reson Med. 2021 Aug;86(2):791-803. doi: 10.1002/mrm.28748. Epub 2021 Mar 10.

引用本文的文献

1
Synthetic MR: Clinical applications in neuroradiology.
Neuroradiology. 2025 Mar;67(3):509-527. doi: 10.1007/s00234-025-03547-8. Epub 2025 Jan 31.
2
A single 1-min brain MRI scan for generating multiple synthetic image contrasts in awake children from quantitative relaxometry maps.
Pediatr Radiol. 2025 Feb;55(2):312-323. doi: 10.1007/s00247-024-06113-1. Epub 2024 Dec 18.
3
Optimization and validation of multi-echo, multi-contrast SAGE acquisition in fMRI.
Imaging Neurosci (Camb). 2024 Jul 2;2:1-20. doi: 10.1162/imag_a_00217. eCollection 2024 Jul 1.
6
Style Transfer of Chinese Art Works Based on Dual Channel Deep Learning Model.
Comput Intell Neurosci. 2022 Sep 20;2022:4376006. doi: 10.1155/2022/4376006. eCollection 2022.
7
Primary Multiparametric Quantitative Brain MRI: State-of-the-Art Relaxometric and Proton Density Mapping Techniques.
Radiology. 2022 Oct;305(1):5-18. doi: 10.1148/radiol.211519. Epub 2022 Aug 30.
8
Mapping astrogliosis in the individual human brain using multidimensional MRI.
Brain. 2023 Mar 1;146(3):1212-1226. doi: 10.1093/brain/awac298.
9
Recent Advances in Radio-Frequency Coil Technologies: Flexible, Wireless, and Integrated Coil Arrays.
J Magn Reson Imaging. 2022 Apr;55(4):1026-1042. doi: 10.1002/jmri.27865. Epub 2021 Jul 29.

本文引用的文献

1
Improved MUSSELS reconstruction for high-resolution multi-shot diffusion weighted imaging.
Magn Reson Med. 2020 Jun;83(6):2253-2263. doi: 10.1002/mrm.28090. Epub 2019 Dec 2.
2
Three-dimensional simultaneous brain T , T , and ADC mapping with MR Multitasking.
Magn Reson Med. 2020 Jul;84(1):72-88. doi: 10.1002/mrm.28092. Epub 2019 Nov 25.
3
snapMRF: GPU-accelerated magnetic resonance fingerprinting dictionary generation and matching using extended phase graphs.
Magn Reson Imaging. 2020 Feb;66:248-256. doi: 10.1016/j.mri.2019.11.015. Epub 2019 Nov 15.
4
MoDL-MUSSELS: Model-Based Deep Learning for Multishot Sensitivity-Encoded Diffusion MRI.
IEEE Trans Med Imaging. 2020 Apr;39(4):1268-1277. doi: 10.1109/TMI.2019.2946501. Epub 2019 Oct 9.
7
Robust 3D Bloch-Siegert based mapping using multi-echo general linear modeling.
Magn Reson Med. 2019 Dec;82(6):2003-2015. doi: 10.1002/mrm.27851. Epub 2019 Jul 18.
8
Ultrafast 3D Bloch-Siegert B -mapping using variational modeling.
Magn Reson Med. 2019 Feb;81(2):881-892. doi: 10.1002/mrm.27434. Epub 2018 Oct 12.
9
Magnetic resonance multitasking for motion-resolved quantitative cardiovascular imaging.
Nat Biomed Eng. 2018 Apr;2(4):215-226. doi: 10.1038/s41551-018-0217-y. Epub 2018 Apr 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验