Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States.
Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States.
Acta Biomater. 2023 Jun;163:378-391. doi: 10.1016/j.actbio.2022.09.043. Epub 2022 Sep 28.
The peritumoral stroma is a complex 3D tissue that provides cells with myriad biophysical and biochemical cues. Histologic observations suggest that during metastatic spread of carcinomas, these cues influence transformed epithelial cells, prompting a diversity of migration modes spanning single cell and multicellular phenotypes. Purported consequences of these variations in tumor escape strategies include differential metastatic capability and therapy resistance. Therefore, understanding how cues from the peritumoral stromal microenvironment regulate migration mode has both prognostic and therapeutic value. Here, we utilize a synthetic stromal mimetic in which matrix fiber density and bulk hydrogel mechanics can be orthogonally tuned to investigate the contribution of these two key matrix attributes on MCF10A migration mode phenotypes, epithelial-mesenchymal transition (EMT), and invasive potential. We develop an automated computational image analysis framework to extract migratory phenotypes from fluorescent images and determine 3D migration metrics relevant to metastatic spread. Using this analysis, we find that matrix fiber density and bulk hydrogel mechanics distinctly contribute to a variety of MCF10A migration modes including amoeboid, single mesenchymal, clusters, and strands. We identify combinations of physical and soluble cues that induce a variety of migration modes originating from the same MCF10A spheroid and use these settings to examine a functional consequence of migration mode -resistance to apoptosis. We find that cells migrating as strands are more resistant to staurosporine-induced apoptosis than either disconnected clusters or individual invading cells. Improved models of the peritumoral stromal microenvironment and understanding of the relationships between matrix attributes and cell migration mode can aid ongoing efforts to identify effective cancer therapeutics that address cell plasticity-based therapy resistances. STATEMENT OF SIGNIFICANCE: Stromal extracellular matrix structure dictates both cell homeostasis and activation towards migratory phenotypes. However decoupling the effects of myriad biophysical cues has been difficult to achieve. Here, we encapsulate electrospun fiber segments within an amorphous hydrogel to create a fiber-reinforced hydrogel composite in which fiber density and hydrogel stiffness can be orthogonally tuned. Quantification of 3D cell migration reveal these two parameters uniquely contribute to a diversity of migration phenotypes spanning amoeboid, single mesenchymal, multicellular cluster, and collective strand. By tuning biophysical and biochemical cues to elicit heterogeneous migration phenotypes, we find that collective strands best resist apoptosis. This work establishes a composite approach to modulate fibrous topography and bulk hydrogel mechanics and identified biomaterial parameters to direct distinct 3D cell migration phenotypes.
肿瘤周围基质是一种复杂的 3D 组织,为细胞提供了无数的生物物理和生化线索。组织学观察表明,在癌细胞转移扩散过程中,这些线索会影响转化的上皮细胞,促使细胞采用多种迁移模式,包括单细胞和多细胞表型。这些肿瘤逃逸策略变化的推测后果包括不同的转移能力和治疗耐药性。因此,了解肿瘤周围基质微环境中的线索如何调节迁移模式具有预后和治疗价值。在这里,我们利用一种合成的基质模拟物,其中基质纤维密度和整体水凝胶力学可以正交调节,以研究这两个关键基质属性对 MCF10A 迁移模式表型、上皮-间充质转化(EMT)和侵袭潜能的贡献。我们开发了一种自动计算图像分析框架,从荧光图像中提取迁移表型,并确定与转移扩散相关的 3D 迁移度量。使用这种分析,我们发现基质纤维密度和整体水凝胶力学明显促进了 MCF10A 的各种迁移模式,包括阿米巴样、单个间充质、簇和链。我们确定了物理和可溶性线索的组合,这些线索诱导了来自同一个 MCF10A 球体的各种迁移模式,并使用这些设置来检查迁移模式的功能后果——抗细胞凋亡。我们发现,与离散的簇或单个侵袭细胞相比,以链状迁移的细胞对 staurosporine 诱导的凋亡更具抵抗力。改进的肿瘤周围基质微环境模型和对基质属性与细胞迁移模式之间关系的理解,可以帮助正在进行的努力,以确定有效的癌症治疗方法,解决基于细胞可塑性的治疗耐药性。
基质细胞外基质结构决定了细胞的稳态和向迁移表型的激活。然而,将无数生物物理线索的影响分离一直很困难。在这里,我们将电纺纤维段包裹在无定形水凝胶中,以创建一种纤维增强水凝胶复合材料,其中纤维密度和水凝胶硬度可以正交调节。3D 细胞迁移的定量分析显示,这两个参数独特地促进了多种迁移表型,包括阿米巴样、单个间充质、多细胞簇和集体链。通过调整生物物理和生化线索以产生异质迁移表型,我们发现集体链状迁移对细胞凋亡的抵抗力最强。这项工作建立了一种调节纤维形貌和整体水凝胶力学的复合材料方法,并确定了生物材料参数来指导不同的 3D 细胞迁移表型。