Suppr超能文献

血管化肠类器官模型的优化

Optimization of Vascularized Intestinal Organoid Model.

作者信息

Wen Zhang, Orduno Mariabelen, Liang Zixie, Gong Xiangyu, Mak Michael

机构信息

Department of Biomedical Engineering, Yale University, New Haven, CT, USA.

出版信息

Adv Healthc Mater. 2024 Dec;13(31):e2400977. doi: 10.1002/adhm.202400977. Epub 2024 Aug 1.

Abstract

Vasculature is crucial for maintaining organ homeostasis and metabolism. Although 3D organoids can mimic organ structures and patterns, they still lack vascular systems, limiting the recapitulation of physiological complexities. Although vascularization of organoids has been demonstrated by mixing Matrigel in fibrin, how the mixed gel niche affects endothelial cells (ECs) and organoids remains unclear. Existing protocols rely on fibroblasts to promote vascular network formation. This study explores how varying the ratio of Matrigel in fibrin-Matrigel co-gel affects vascular network formation and intestinal organoid growth. A fine-tuned hydrogel is developed by adding aprotinin and 15% Matrigel in fibrin. Medium for co-culturing ECs and organoids is modified with basic fibroblast growth factor (bFGF) and heparin. In combination with fine-tuned hydrogel and modified medium, vascular network formation and organoid vascularization are successfully generated in the absence of fibroblast. Furthermore, structural cues and pore architectures are critical for angiogenesis and vascularization. By incorporating engineered thick collagen fiber bundles into the system, vascular network formation is guided by bundle architectures, enhancing interactions between vascular networks and organoids. The results demonstrate an optimized system that advances tissue and organoid vascularization by combining fiber bundles with fine-tuned hydrogel and modified medium.

摘要

血管系统对于维持器官内环境稳定和新陈代谢至关重要。尽管三维类器官能够模拟器官结构和模式,但它们仍然缺乏血管系统,这限制了对生理复杂性的重现。虽然通过在纤维蛋白中混合基质胶已证明类器官能够血管化,但混合凝胶微环境如何影响内皮细胞(ECs)和类器官仍不清楚。现有的方案依赖成纤维细胞来促进血管网络的形成。本研究探讨了在纤维蛋白 - 基质胶共凝胶中改变基质胶的比例如何影响血管网络形成和肠类器官生长。通过在纤维蛋白中添加抑肽酶和15%的基质胶,开发出一种经过微调的水凝胶。用碱性成纤维细胞生长因子(bFGF)和肝素对内皮细胞与类器官共培养的培养基进行了改良。结合微调的水凝胶和改良的培养基,在没有成纤维细胞的情况下成功实现了血管网络形成和类器官血管化。此外,结构线索和孔隙结构对血管生成和血管化至关重要。通过将工程化的粗胶原纤维束纳入系统,血管网络的形成受纤维束结构的引导,增强了血管网络与类器官之间的相互作用。结果表明,通过将纤维束与微调的水凝胶和改良的培养基相结合,可优化系统以促进组织和类器官的血管化。

相似文献

1
Optimization of Vascularized Intestinal Organoid Model.
Adv Healthc Mater. 2024 Dec;13(31):e2400977. doi: 10.1002/adhm.202400977. Epub 2024 Aug 1.
2
Non-matrigel scaffolds for organoid cultures.
Cancer Lett. 2021 Apr 28;504:58-66. doi: 10.1016/j.canlet.2021.01.025. Epub 2021 Feb 11.
3
Research Progress in Hydrogels for Cartilage Organoids.
Adv Healthc Mater. 2024 Sep;13(22):e2400431. doi: 10.1002/adhm.202400431. Epub 2024 May 27.
4
Enhanced Vascular-like Network Formation of Encapsulated HUVECs and ADSCs Coculture in Growth Factors Conjugated GelMA Hydrogels.
ACS Biomater Sci Eng. 2024 May 13;10(5):3306-3315. doi: 10.1021/acsbiomaterials.4c00465. Epub 2024 Apr 18.
5
The biological macromolecules constructed Matrigel for cultured organoids in biomedical and tissue engineering.
Colloids Surf B Biointerfaces. 2025 Mar;247:114435. doi: 10.1016/j.colsurfb.2024.114435. Epub 2024 Dec 6.
6
Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering.
Acta Biomater. 2019 Sep 1;95:348-356. doi: 10.1016/j.actbio.2019.02.046. Epub 2019 Mar 1.
7
The growth of a vascular network inside a collagen-citric acid derivative hydrogel in rats.
Biomaterials. 2009 Jul;30(21):3580-7. doi: 10.1016/j.biomaterials.2009.03.026. Epub 2009 Apr 11.

引用本文的文献

1
Organoid-based tissue engineering for advanced tissue repair and reconstruction.
Mater Today Bio. 2025 Jul 15;33:102093. doi: 10.1016/j.mtbio.2025.102093. eCollection 2025 Aug.
2
Application of instant assembly of collagen to bioprint cardiac tissues.
APL Bioeng. 2025 Jun 12;9(2):026124. doi: 10.1063/5.0252746. eCollection 2025 Jun.
4
Intestinal organoids in inflammatory bowel disease: advances, applications, and future directions.
Front Cell Dev Biol. 2025 May 12;13:1517121. doi: 10.3389/fcell.2025.1517121. eCollection 2025.
5
Frontier progress and translational challenges of pluripotent differentiation of stem cells.
Front Genet. 2025 Apr 28;16:1583391. doi: 10.3389/fgene.2025.1583391. eCollection 2025.
6
Advances and applications of gut organoids: modeling intestinal diseases and therapeutic development.
Life Med. 2025 Mar 7;4(2):lnaf012. doi: 10.1093/lifemedi/lnaf012. eCollection 2025 Apr.
7
Design Strategies and Application Potential of Multifunctional Hydrogels for Promoting Angiogenesis.
Int J Nanomedicine. 2024 Nov 27;19:12719-12742. doi: 10.2147/IJN.S495971. eCollection 2024.

本文引用的文献

1
Laminin-coated electronic scaffolds with vascular topography for tracking and promoting the migration of brain cells after injury.
Nat Biomed Eng. 2023 Oct;7(10):1282-1292. doi: 10.1038/s41551-023-01101-6. Epub 2023 Oct 9.
2
Organoids.
Nat Rev Methods Primers. 2022;2. doi: 10.1038/s43586-022-00174-y. Epub 2022 Dec 1.
4
Geometric engineering of organoid culture for enhanced organogenesis in a dish.
Nat Methods. 2022 Nov;19(11):1449-1460. doi: 10.1038/s41592-022-01643-8. Epub 2022 Oct 24.
5
Fiber density and matrix stiffness modulate distinct cell migration modes in a 3D stroma mimetic composite hydrogel.
Acta Biomater. 2023 Jun;163:378-391. doi: 10.1016/j.actbio.2022.09.043. Epub 2022 Sep 28.
6
Engineering a Hierarchical Biphasic Gel for Subcutaneous Vascularization.
Adv Healthc Mater. 2022 Oct;11(19):e2200922. doi: 10.1002/adhm.202200922. Epub 2022 Aug 11.
7
Engineering the multiscale complexity of vascular networks.
Nat Rev Mater. 2022;7(9):702-716. doi: 10.1038/s41578-022-00447-8. Epub 2022 May 31.
8
Extracellular matrix requirements for gastrointestinal organoid cultures.
Biomaterials. 2021 Sep;276:121020. doi: 10.1016/j.biomaterials.2021.121020. Epub 2021 Jul 10.
9
Engineering organoids.
Nat Rev Mater. 2021;6(5):402-420. doi: 10.1038/s41578-021-00279-y. Epub 2021 Feb 19.
10
Transient Support from Fibroblasts is Sufficient to Drive Functional Vascularization in Engineered Tissues.
Adv Funct Mater. 2020 Nov 25;30(48). doi: 10.1002/adfm.202003777. Epub 2020 Jun 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验