Masuda-Ozawa Tokiha, Fujita Sosuke, Nakamura Ryotaro, Watanabe Hiroshi, Kuranaga Erina, Nakajima Yu-Ichiro
Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan.
Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
Sci Rep. 2022 Sep 30;12(1):16049. doi: 10.1038/s41598-022-20476-1.
As the sister group to bilaterians, cnidarians stand in a unique phylogenetic position that provides insight into evolutionary aspects of animal development, physiology, and behavior. While cnidarians are classified into two types, sessile polyps and free-swimming medusae, most studies at the cellular and molecular levels have been conducted on representative polyp-type cnidarians and have focused on establishing techniques of genetic manipulation. Recently, gene knockdown by delivery of short hairpin RNAs into eggs via electroporation has been introduced in two polyp-type cnidarians, Nematostella vectensis and Hydractinia symbiolongicarpus, enabling systematic loss-of-function experiments. By contrast, current methods of genetic manipulation for most medusa-type cnidarians, or jellyfish, are quite limited, except for Clytia hemisphaerica, and reliable techniques are required to interrogate function of specific genes in different jellyfish species. Here, we present a method to knock down target genes by delivering small interfering RNA (siRNA) into fertilized eggs via electroporation, using the hydrozoan jellyfish, Clytia hemisphaerica and Cladonema paciificum. We show that siRNAs targeting endogenous GFP1 and Wnt3 in Clytia efficiently knock down gene expression and result in known planula phenotypes: loss of green fluorescence and defects in axial patterning, respectively. We also successfully knock down endogenous Wnt3 in Cladonema by siRNA electroporation, which circumvents the technical difficulty of microinjecting small eggs. Wnt3 knockdown in Cladonema causes gene expression changes in axial markers, suggesting a conserved Wnt/β-catenin-mediated pathway that controls axial polarity during embryogenesis. Our gene-targeting siRNA electroporation method is applicable to other animals, including and beyond jellyfish species, and will facilitate the investigation and understanding of myriad aspects of animal development.
作为两侧对称动物的姐妹类群,刺胞动物处于独特的系统发育位置,这为深入了解动物发育、生理学和行为的进化方面提供了线索。虽然刺胞动物分为固着的水螅体和自由游动的水母两类,但大多数细胞和分子水平的研究都是在具有代表性的水螅体型刺胞动物上进行的,并且主要集中在建立基因操作技术方面。最近,通过电穿孔将短发夹RNA导入卵中进行基因敲低的方法已在两种水螅体型刺胞动物——星状海葵和长腕管水母中得到应用,从而能够进行系统性的功能缺失实验。相比之下,除了半球美螅水母外,目前针对大多数水母型刺胞动物(即水母)的基因操作方法非常有限,因此需要可靠的技术来研究不同水母物种中特定基因的功能。在这里,我们介绍一种通过电穿孔将小干扰RNA(siRNA)导入受精卵中来敲低靶基因的方法,该方法使用了水螅水母——半球美螅水母和太平洋枝管水母。我们发现,针对半球美螅水母内源性绿色荧光蛋白1(GFP1)和Wnt3的siRNA能够有效地敲低基因表达,并导致已知的浮浪幼虫表型:分别是绿色荧光的丧失和轴向模式形成的缺陷。我们还通过siRNA电穿孔成功地在枝管水母中敲低了内源性Wnt3,这克服了对小卵进行显微注射的技术难题。枝管水母中Wnt3的敲低导致轴向标记物的基因表达发生变化,这表明在胚胎发生过程中存在一条保守的Wnt/β-连环蛋白介导的控制轴向极性的信号通路。我们的基因靶向siRNA电穿孔方法适用于包括水母物种及其他物种在内的其他动物,将有助于对动物发育的众多方面进行研究和理解。