基于深度神经网络的驾驶员注意区域成像方法研究。

Research on imaging method of driver's attention area based on deep neural network.

机构信息

School of Mechanical Engineering, Xi'an University of Science and Technology, Xi'an , 710054, China.

出版信息

Sci Rep. 2022 Sep 30;12(1):16427. doi: 10.1038/s41598-022-20829-w.

Abstract

In the driving process, the driver's visual attention area is of great significance to the research of intelligent driving decision-making behavior and the dynamic research of driving behavior. Traditional driver intention recognition has problems such as large contact interference with wearing equipment, the high false detection rate for drivers wearing glasses and strong light, and unclear extraction of the field of view. We use the driver's field of vision image taken by the dash cam and the corresponding vehicle driving state data (steering wheel angle and vehicle speed). Combined with the interpretability method of the deep neural network, a method of imaging the driver's attention area is proposed. The basic idea of this method is to perform attention imaging analysis on the neural network virtual driver based on the vehicle driving state data, and then infer the visual attention area of the human driver. The results show that this method can realize the reverse reasoning of the driver's intention behavior during driving, image the driver's visual attention area, and provide a theoretical basis for the dynamic analysis of the driver's driving behavior and the further development of traffic safety analysis.

摘要

在驾驶过程中,驾驶员的视觉注意区域对智能驾驶决策行为的研究和驾驶行为的动态研究具有重要意义。传统的驾驶员意图识别存在佩戴设备时接触干扰大、驾驶员戴眼镜和强光时误检率高、视野提取不清晰等问题。我们使用行车记录仪拍摄的驾驶员视野图像和相应的车辆行驶状态数据(方向盘转角和车速)。结合深度神经网络的可解释性方法,提出了一种成像驾驶员注意力区域的方法。该方法的基本思想是基于车辆行驶状态数据对神经网络虚拟驾驶员进行注意力成像分析,然后推断出人类驾驶员的视觉注意力区域。结果表明,该方法可以实现驾驶过程中驾驶员意图行为的反向推理,对驾驶员的视觉注意力区域进行成像,为驾驶员驾驶行为的动态分析和交通安全分析的进一步发展提供理论依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13c8/9525277/e93865aab4d1/41598_2022_20829_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索