Suppr超能文献

用于驾驶员视觉注意力预测的高分辨率神经网络。

High-Resolution Neural Network for Driver Visual Attention Prediction.

机构信息

Department of Electronic and IT Media Engineering, Seoul National University of Science and Technology, Seoul 139-743, Korea.

Department of Electrical and Information Engineering, Seoul National University of Science and Technology, Seoul 139-743, Korea.

出版信息

Sensors (Basel). 2020 Apr 4;20(7):2030. doi: 10.3390/s20072030.

Abstract

Driving is a task that puts heavy demands on visual information, thereby the human visual system plays a critical role in making proper decisions for safe driving. Understanding a driver's visual attention and relevant behavior information is a challenging but essential task in advanced driver-assistance systems (ADAS) and efficient autonomous vehicles (AV). Specifically, robust prediction of a driver's attention from images could be a crucial key to assist intelligent vehicle systems where a self-driving car is required to move safely interacting with the surrounding environment. Thus, in this paper, we investigate a human driver's visual behavior in terms of computer vision to estimate the driver's attention locations in images. First, we show that feature representations at high resolution improves visual attention prediction accuracy and localization performance when being fused with features at low-resolution. To demonstrate this, we employ a deep convolutional neural network framework that learns and extracts feature representations at multiple resolutions. In particular, the network maintains the feature representation with the highest resolution at the original image resolution. Second, attention prediction tends to be biased toward centers of images when neural networks are trained using typical visual attention datasets. To avoid overfitting to the center-biased solution, the network is trained using diverse regions of images. Finally, the experimental results verify that our proposed framework improves the prediction accuracy of a driver's attention locations.

摘要

驾驶是一项对视觉信息要求很高的任务,因此人类视觉系统在做出安全驾驶的正确决策方面起着至关重要的作用。理解驾驶员的视觉注意力和相关行为信息是先进驾驶员辅助系统 (ADAS) 和高效自动驾驶汽车 (AV) 中的一项具有挑战性但必不可少的任务。具体来说,从图像中准确预测驾驶员的注意力可能是辅助智能车辆系统的关键,在这些系统中,自动驾驶汽车需要与周围环境安全交互。因此,在本文中,我们从计算机视觉的角度研究了人类驾驶员的视觉行为,以估计驾驶员在图像中的注意力位置。首先,我们表明,当与低分辨率特征融合时,高分辨率的特征表示可以提高视觉注意力预测的准确性和定位性能。为了证明这一点,我们采用了一种深度卷积神经网络框架,该框架可以在多个分辨率下学习和提取特征表示。特别是,该网络在原始图像分辨率下保持具有最高分辨率的特征表示。其次,当使用典型的视觉注意力数据集训练神经网络时,注意力预测往往偏向于图像的中心。为了避免对中心偏向解决方案的过度拟合,网络使用图像的不同区域进行训练。最后,实验结果验证了我们提出的框架可以提高驾驶员注意力位置的预测准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d15/7181285/46c6ba068437/sensors-20-02030-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验