Suppr超能文献

运动学习驱动学习激活轴突上间歇性髓鞘化的动态模式。

Motor learning drives dynamic patterns of intermittent myelination on learning-activated axons.

机构信息

Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA.

Neuroscience IDP Program, Stanford University School of Medicine, Stanford, CA, USA.

出版信息

Nat Neurosci. 2022 Oct;25(10):1300-1313. doi: 10.1038/s41593-022-01169-4. Epub 2022 Sep 30.

Abstract

Myelin plasticity occurs when newly formed and pre-existing oligodendrocytes remodel existing patterns of myelination. Myelin remodeling occurs in response to changes in neuronal activity and is required for learning and memory. However, the link between behavior-induced neuronal activity and circuit-specific changes in myelination remains unclear. Using longitudinal in vivo two-photon imaging and targeted labeling of learning-activated neurons in mice, we explore how the pattern of intermittent myelination is altered on individual cortical axons during learning of a dexterous reach task. We show that behavior-induced myelin plasticity is targeted to learning-activated axons and occurs in a staged response across cortical layers in the mouse primary motor cortex. During learning, myelin sheaths retract, which results in lengthening of nodes of Ranvier. Following motor learning, addition of newly formed myelin sheaths increases the number of continuous stretches of myelination. Computational modeling suggests that motor learning-induced myelin plasticity initially slows and subsequently increases axonal conduction speed. Finally, we show that both the magnitude and timing of nodal and myelin dynamics correlate with improvement of behavioral performance during motor learning. Thus, learning-induced and circuit-specific myelination changes may contribute to information encoding in neural circuits during motor learning.

摘要

髓鞘可塑性发生在新形成和预先存在的少突胶质细胞重塑髓鞘化的现有模式时。髓鞘重塑发生在神经元活动的变化响应,并需要学习和记忆。然而,行为诱导的神经元活动和特定回路髓鞘化变化之间的联系仍不清楚。使用纵向体内双光子成像和在小鼠中靶向标记学习激活的神经元,我们探索了在灵巧抓取任务学习期间,单个皮质轴突上的间歇性髓鞘化模式如何发生变化。我们表明,行为诱导的髓鞘可塑性针对学习激活的轴突,并在小鼠初级运动皮层的皮质层中以分级反应发生。在学习过程中,髓鞘鞘回缩,导致郎飞结延长。在运动学习之后,新形成的髓鞘鞘的添加增加了连续髓鞘化的数量。计算模型表明,运动学习诱导的髓鞘可塑性最初减慢,随后增加轴突传导速度。最后,我们表明,节点和髓鞘动力学的幅度和时间与运动学习过程中行为表现的改善相关。因此,学习诱导和特定回路的髓鞘变化可能有助于运动学习期间神经回路中的信息编码。

相似文献

4
Oligodendrocyte HCN2 Channels Regulate Myelin Sheath Length.少突胶质细胞 HCN2 通道调节髓鞘长度。
J Neurosci. 2021 Sep 22;41(38):7954-7964. doi: 10.1523/JNEUROSCI.2463-20.2021. Epub 2021 Aug 2.

引用本文的文献

5
Plasticity of Myelination.髓鞘形成的可塑性
Adv Neurobiol. 2025;43:181-204. doi: 10.1007/978-3-031-87919-7_8.

本文引用的文献

1
Oligodendrocyte HCN2 Channels Regulate Myelin Sheath Length.少突胶质细胞 HCN2 通道调节髓鞘长度。
J Neurosci. 2021 Sep 22;41(38):7954-7964. doi: 10.1523/JNEUROSCI.2463-20.2021. Epub 2021 Aug 2.
5
A role of oligodendrocytes in information processing.少突胶质细胞在信息处理中的作用。
Nat Commun. 2020 Oct 30;11(1):5497. doi: 10.1038/s41467-020-19152-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验