文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Nonviral delivery systems for antisense oligonucleotide therapeutics.

作者信息

Huang Si, Hao Xin-Yan, Li Yong-Jiang, Wu Jun-Yong, Xiang Da-Xiong, Luo Shilin

机构信息

Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.

Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.

出版信息

Biomater Res. 2022 Sep 30;26(1):49. doi: 10.1186/s40824-022-00292-4.


DOI:10.1186/s40824-022-00292-4
PMID:36180936
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9523189/
Abstract

Antisense oligonucleotides (ASOs) are an important tool for the treatment of many genetic disorders. However, similar to other gene drugs, vectors are often required to protect them from degradation and clearance, and to accomplish their transport in vivo. Compared with viral vectors, artificial nonviral nanoparticles have a variety of design, synthesis, and formulation possibilities that can be selected to accomplish protection and delivery for specific applications, and they have served critical therapeutic purposes in animal model research and clinical applications, allowing safe and efficient gene delivery processes into the target cells. We believe that as new ASO drugs develop, the exploration for corresponding nonviral vectors is inevitable. Intensive development of nonviral vectors with improved delivery strategies based on specific targets can continue to expand the value of ASO therapeutic approaches. Here, we provide an overview of current nonviral delivery strategies, including ASOs modifications, action mechanisms, and multi-carrier methods, which aim to address the irreplaceable role of nonviral vectors in the progressive development of ASOs delivery.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d214/9524126/110cf99a7746/40824_2022_292_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d214/9524126/8823ef0e5758/40824_2022_292_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d214/9524126/5f358de630c0/40824_2022_292_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d214/9524126/58ab6a546bdf/40824_2022_292_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d214/9524126/7cdb49dbfe6b/40824_2022_292_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d214/9524126/9604c03cc4ad/40824_2022_292_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d214/9524126/dc17298e683b/40824_2022_292_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d214/9524126/dfbc71873acd/40824_2022_292_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d214/9524126/b7d43463a9ce/40824_2022_292_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d214/9524126/110cf99a7746/40824_2022_292_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d214/9524126/8823ef0e5758/40824_2022_292_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d214/9524126/5f358de630c0/40824_2022_292_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d214/9524126/58ab6a546bdf/40824_2022_292_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d214/9524126/7cdb49dbfe6b/40824_2022_292_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d214/9524126/9604c03cc4ad/40824_2022_292_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d214/9524126/dc17298e683b/40824_2022_292_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d214/9524126/dfbc71873acd/40824_2022_292_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d214/9524126/b7d43463a9ce/40824_2022_292_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d214/9524126/110cf99a7746/40824_2022_292_Fig9_HTML.jpg

相似文献

[1]
Nonviral delivery systems for antisense oligonucleotide therapeutics.

Biomater Res. 2022-9-30

[2]
Peptide vectors for the nonviral delivery of nucleic acids.

Acc Chem Res. 2012-3-28

[3]
Application of a Quality-By-Design Approach to Optimise Lipid-Polymer Hybrid Nanoparticles Loaded with a Splice-Correction Antisense Oligonucleotide: Maximising Loading and Intracellular Delivery.

Pharm Res. 2019-1-9

[4]
Recent advances in nonviral vectors for gene delivery.

Acc Chem Res. 2011-8-26

[5]
[Recent progress and prospect in oligonucleotide therapeutics].

Nihon Rinsho. 2015-6

[6]
Medicinal Chemistry of Antisense Oligonucleotides for Therapeutic Use in SARS-CoV-2: Design Strategies and Challenges for Targeted Delivery.

Curr Med Chem. 2025

[7]
Joining forces to develop individualized antisense oligonucleotides for patients with brain or eye diseases: the example of the Dutch Center for RNA Therapeutics.

Ther Adv Rare Dis. 2024-9-23

[8]
Disarmed anthrax toxin delivers antisense oligonucleotides and siRNA with high efficiency and low toxicity.

J Control Release. 2015-11-9

[9]
Controlled delivery of antisense oligonucleotides: a brief review of current strategies.

Expert Opin Drug Deliv. 2009-7

[10]
A physiologically-based pharmacokinetic model to describe antisense oligonucleotide distribution after intrathecal administration.

J Pharmacokinet Pharmacodyn. 2021-10

引用本文的文献

[1]
Neuroaxonal Degeneration as a Converging Mechanism in Motor Neuron Diseases (MNDs): Molecular Insights into RNA Dysregulation and Emerging Therapeutic Targets.

Int J Mol Sci. 2025-8-7

[2]
LncRNA-Protein Interactions: A Key to Deciphering LncRNA Mechanisms.

Biomolecules. 2025-6-17

[3]
Aptamer-ODN Chimeras: Enabling Cell-Specific ODN Targeting Therapy.

Cells. 2025-5-12

[4]
Exploring precision treatments in immune-mediated inflammatory diseases: Harnessing the infinite potential of nucleic acid delivery.

Exploration (Beijing). 2024-5-24

[5]
Integrating Machine Learning-Based Approaches into the Design of ASO Therapies.

Genes (Basel). 2025-2-2

[6]
Multifunctional molecular hybrid for targeted colorectal cancer cells: Integrating doxorubicin, AS1411 aptamer, and T9/U4 ASO.

PLoS One. 2025-2-13

[7]
Photochemical Stabilization of Self-Assembled Spherical Nucleic Acids.

Small. 2025-2

[8]
Endosomal Escape and Nuclear Localization: Critical Barriers for Therapeutic Nucleic Acids.

Molecules. 2024-12-19

[9]
Antisense oligonucleotides as a precision therapy for developmental and epileptic encephalopathies.

CNS Neurosci Ther. 2024-11

[10]
Oligonucleotide therapeutics in sports? An antidoping perspective.

Arch Pharm (Weinheim). 2025-1

本文引用的文献

[1]
The role of lipid components in lipid nanoparticles for vaccines and gene therapy.

Adv Drug Deliv Rev. 2022-9

[2]
Chitosan nanocarriers for microRNA delivery and detection: A preliminary review with emphasis on cancer.

Carbohydr Polym. 2022-8-15

[3]
Cationic lipid-based formulations for encapsulation and delivery of anti-EFG1 2' OMethylRNA oligomer.

Med Mycol. 2022-5-18

[4]
Activity and Tissue Distribution of Antisense Oligonucleotide CT102 Encapsulated with Cytidinyl/Cationic Lipid against Hepatocellular Carcinoma.

Mol Pharm. 2022-12-5

[5]
delivery of plasmid DNA by lipid nanoparticles: the influence of ionizable cationic lipids on organ-selective gene expression.

Biomater Sci. 2022-5-31

[6]
Dual pH-Responsive and Tumor-Targeted Nanoparticle-Mediated Anti-Angiogenesis siRNA Delivery for Tumor Treatment.

Int J Nanomedicine. 2022

[7]
The Unexpected Importance of the Primary Structure of the Hydrophobic Part of One-Component Ionizable Amphiphilic Janus Dendrimers in Targeted mRNA Delivery Activity.

J Am Chem Soc. 2022-3-23

[8]
Absorption, Distribution, Metabolism, and Excretion of US Food and Drug Administration-Approved Antisense Oligonucleotide Drugs.

Drug Metab Dispos. 2022-6

[9]
NanoSIMS Imaging Reveals the Impact of Ligand-ASO Conjugate Stability on ASO Subcellular Distribution.

Pharmaceutics. 2022-2-21

[10]
Preclinical Evaluation of the Renal Toxicity of Oligonucleotide Therapeutics in Mice.

Methods Mol Biol. 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索