Dian Renwei, Li Shutao, Guo Anjing, Fang Leyuan
IEEE Trans Neural Netw Learn Syst. 2018 Nov;29(11):5345-5355. doi: 10.1109/TNNLS.2018.2798162. Epub 2018 Feb 20.
Hyperspectral image (HSI) sharpening, which aims at fusing an observable low spatial resolution (LR) HSI (LR-HSI) with a high spatial resolution (HR) multispectral image (HR-MSI) of the same scene to acquire an HR-HSI, has recently attracted much attention. Most of the recent HSI sharpening approaches are based on image priors modeling, which are usually sensitive to the parameters selection and time-consuming. This paper presents a deep HSI sharpening method (named DHSIS) for the fusion of an LR-HSI with an HR-MSI, which directly learns the image priors via deep convolutional neural network-based residual learning. The DHSIS method incorporates the learned deep priors into the LR-HSI and HR-MSI fusion framework. Specifically, we first initialize the HR-HSI from the fusion framework via solving a Sylvester equation. Then, we map the initialized HR-HSI to the reference HR-HSI via deep residual learning to learn the image priors. Finally, the learned image priors are returned to the fusion framework to reconstruct the final HR-HSI. Experimental results demonstrate the superiority of the DHSIS approach over existing state-of-the-art HSI sharpening approaches in terms of reconstruction accuracy and running time.
高光谱图像(HSI)锐化旨在将同一场景中可观测的低空间分辨率(LR)高光谱图像(LR-HSI)与高空间分辨率(HR)多光谱图像(HR-MSI)进行融合,以获取高分辨率高光谱图像(HR-HSI),近年来受到了广泛关注。最近的大多数HSI锐化方法基于图像先验建模,这些方法通常对参数选择敏感且耗时。本文提出了一种用于LR-HSI与HR-MSI融合的深度HSI锐化方法(称为DHSIS),该方法通过基于深度卷积神经网络的残差学习直接学习图像先验。DHSIS方法将学习到的深度先验纳入LR-HSI和HR-MSI融合框架。具体而言,我们首先通过求解西尔维斯特方程从融合框架初始化HR-HSI。然后,我们通过深度残差学习将初始化后的HR-HSI映射到参考HR-HSI以学习图像先验。最后,将学习到的图像先验返回融合框架以重建最终的HR-HSI。实验结果表明,在重建精度和运行时间方面,DHSIS方法优于现有的最先进HSI锐化方法。