Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Chemistry, Indiana University, Bloomington, Indiana, USA.
J Clin Endocrinol Metab. 2022 Mar 24;107(4):909-928. doi: 10.1210/clinem/dgab849.
Design of "first-generation" insulin analogues over the past 3 decades has provided pharmaceutical formulations with tailored pharmacokinetic (PK) and pharmacodynamic (PD) properties. Application of a molecular tool kit-integrating protein sequence, chemical modification, and formulation-has thus led to improved prandial and basal formulations for the treatment of diabetes mellitus. Although PK/PD changes were modest in relation to prior formulations of human and animal insulins, significant clinical advantages in efficacy (mean glycemia) and safety (rates of hypoglycemia) were obtained. Continuing innovation is providing further improvements to achieve ultrarapid and ultrabasal analogue formulations in an effort to reduce glycemic variability and optimize time in range. Beyond such PK/PD metrics, next-generation insulin analogues seek to exploit therapeutic mechanisms: glucose-responsive ("smart") analogues, pathway-specific ("biased") analogues, and organ-targeted analogues. Smart insulin analogues and delivery systems promise to mitigate hypoglycemic risk, a critical barrier to glycemic control, whereas biased and organ-targeted insulin analogues may better recapitulate physiologic hormonal regulation. In each therapeutic class considerations of cost and stability will affect use and global distribution. This review highlights structural principles underlying next-generation design efforts, their respective biological rationale, and potential clinical applications.
在过去的 30 年中,“第一代”胰岛素类似物的设计为药物制剂提供了具有特定药代动力学(PK)和药效学(PD)特性的配方。因此,通过应用一套分子工具包——包括蛋白质序列、化学修饰和制剂——已经开发出了用于治疗糖尿病的改进型餐时和基础胰岛素制剂。虽然与先前的人胰岛素和动物胰岛素制剂相比,PK/PD 变化不大,但在疗效(平均血糖)和安全性(低血糖发生率)方面取得了显著的临床优势。持续的创新正在提供进一步的改进,以实现超快速和超基础的类似物制剂,从而降低血糖变异性并优化达标时间。除了这些 PK/PD 指标之外,下一代胰岛素类似物还试图利用治疗机制:葡萄糖响应(“智能”)类似物、途径特异性(“偏向”)类似物和靶向器官的类似物。智能胰岛素类似物和输送系统有望降低低血糖风险,这是血糖控制的一个关键障碍,而偏向和靶向器官的胰岛素类似物可能更好地模拟生理激素调节。在每个治疗类别中,成本和稳定性的考虑因素将影响其使用和全球分布。本文综述了下一代设计工作的结构原理、它们各自的生物学原理以及潜在的临床应用。