ASST Santi Paolo e Carlo, Milan, Italy.
Azienda Ospedaliero Universitaria di Modena, Modena, Italy.
Int Urol Nephrol. 2023 Jan;55(1):93-97. doi: 10.1007/s11255-022-03365-4. Epub 2022 Oct 1.
The PRECE is a model predicting the risk of extracapsular extension (ECE) of prostate cancer: it has been developed on more than 6000 patients who underwent robotic radical prostatectomy (RARP) at the Global Robotic Institute, FL, USA. Up to now, it is the single tool predicting either the side and the amount of ECE. The model has a free user-friendly interface and is made up from simple and available covariates, namely age, PSA, cT, GS and percent of positive core, the latter topographically distributed within the prostate gland. Despite the successful performance at internal validation, the model is still lacking an external validation (EV). The aim of the paper is to externally validate the PRECE model on an Italian cohort of patients elected to RARP.
269 prostatic lobes from 141 patients represented the validation dataset. The EV was performed with the receiver operating characteristics (ROC) curves and calibration, to address the ability of PRECE to discriminate between patients with or without ECE.
Overall, an ECE was found in 91 out of the 269 prostatic lobes (34%). Twenty-five patients out of pT3 had a bilateral ECE. The ROC curve showed an AUC of 0.80 (95% CI 0.74-0.85). Sensitivity and specificity were 77% and 69%, respectively. The model showed an acceptable calibration with tendency towards overestimation.
From the current EV, the PRECE displays a good predictive performance to discriminate between cases with and without ECE; despite preliminary, outcomes may support the generalizability of the model in dataset other than the development one.
PRECE 是一种预测前列腺癌囊外扩展(ECE)风险的模型:它是基于美国佛罗里达州全球机器人研究所 6000 多名接受机器人根治性前列腺切除术(RARP)的患者开发的。到目前为止,它是唯一能够预测 ECE 的侧别和程度的工具。该模型具有免费的用户友好界面,由简单且可用的协变量组成,即年龄、PSA、cT、GS 和阳性核心的百分比,后者在前列腺内呈地形分布。尽管在内部验证中表现出色,但该模型仍缺乏外部验证(EV)。本文的目的是在接受 RARP 的意大利患者队列中对外验证 PRECE 模型。
141 名患者的 269 个前列腺叶组成了验证数据集。通过接收者操作特征(ROC)曲线和校准来进行 EV,以评估 PRECE 区分有无 ECE 患者的能力。
总体而言,在 269 个前列腺叶中有 91 个(34%)发现有 ECE。25 名 pT3 患者出现双侧 ECE。ROC 曲线显示 AUC 为 0.80(95%CI 0.74-0.85)。灵敏度和特异性分别为 77%和 69%。该模型显示出可接受的校准度,存在高估的趋势。
从目前的 EV 来看,PRECE 在区分有无 ECE 的病例方面具有良好的预测性能;尽管初步结果,但可能支持该模型在开发数据集以外的其他数据集的泛化能力。