School of Medicine, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Shenzhen 518055, Guangdong Province, China.
Southern University of Science and Technology Hospital, 6019 Liuxian Avenue, Shenzhen 518055, China.
Int J Biol Macromol. 2022 Dec 1;222(Pt A):1175-1191. doi: 10.1016/j.ijbiomac.2022.09.236. Epub 2022 Sep 28.
Diabetic individuals are frequently associated with increased fracture risk and poor bone healing capacity, and the treatment of diabetic bone defects remains a great challenge in orthopedics. In this study, an antioxidant hydrogel was developed using reduced glutathione grafted gelatine methacrylate (GelMA-g-GSH), followed by 3D printing to form a tissue engineering scaffold, which possessed appropriate mechanical property and good biocompatibility. In vitro studies displayed that benefitting from the sustained delivery of reduced glutathione, GelMA-g-GSH scaffold enabled to suppress the overproduction of reactive oxygen species (ROS) and reduce the oxidative stress of cells. Osteogenic experiments showed that GelMA-g-GSH scaffold exhibited excellent osteogenesis performance, with the elevated expression levels of osteogenesis-related genes and proteins. Further, RNA-sequencing revealed that activation of PI3K/Akt signaling pathway of MC3T3-E1 seeded on GelMA-g-GSH scaffold may be the underlying mechanism in promoting osteogenesis. In vivo, diabetic mice calvarial defects experiment demonstrated enhanced bone regeneration after the implantation of GelMA-g-GSH scaffold, as shown by micro-CT and histological analysis. In summary, 3D-printed GelMA-g-GSH scaffold can not only scavenge ROS, but also promote proliferation and differentiation of osteoblasts by activating PI3K/Akt signaling pathway, thereby accelerating bone repair under diabetes.
糖尿病患者通常伴随着骨折风险增加和骨愈合能力差的问题,治疗糖尿病性骨缺损仍然是骨科领域的一大挑战。在这项研究中,使用还原型谷胱甘肽接枝明胶甲基丙烯酰(GelMA-g-GSH)制备了一种抗氧化水凝胶,然后通过 3D 打印形成组织工程支架,该支架具有适当的机械性能和良好的生物相容性。体外研究显示,得益于还原型谷胱甘肽的持续释放,GelMA-g-GSH 支架能够抑制活性氧(ROS)的过度产生并减轻细胞的氧化应激。成骨实验表明,GelMA-g-GSH 支架表现出优异的成骨性能,成骨相关基因和蛋白的表达水平升高。此外,RNA 测序表明,在 GelMA-g-GSH 支架上接种的 MC3T3-E1 细胞中 PI3K/Akt 信号通路的激活可能是促进成骨的潜在机制。在体内,糖尿病小鼠颅骨缺损实验表明,GelMA-g-GSH 支架植入后可增强骨再生,通过 micro-CT 和组织学分析得到证实。综上所述,3D 打印的 GelMA-g-GSH 支架不仅可以清除 ROS,还可以通过激活 PI3K/Akt 信号通路促进成骨细胞的增殖和分化,从而加速糖尿病状态下的骨修复。