Institute of Biomedical Sciences, Academia Sinica, Taipei 11574, Taiwan; Department of Animal Science and Biotechnology, Tunghai University, Taichung 407224, Taiwan.
Institute of Biomedical Sciences, Academia Sinica, Taipei 11574, Taiwan.
Biochim Biophys Acta Proteins Proteom. 2023 Jan 1;1871(1):140855. doi: 10.1016/j.bbapap.2022.140855. Epub 2022 Sep 29.
Bacteria depend on the ferrous iron transport (Feo) system for the uptake of ferrous iron (Fe). The Feo system is crucial for colonization and virulence of pathogens. In γ-proteobacteria, the system consists of FeoA, FeoB, and FeoC. The function of FeoA remains unknown. FeoB likely forms the channel, whose regulation has been suggested to involve its GTPase domain (part of its NFeoB domain). FeoC from Klebsiella pneumonia was found to contain a [4Fe4S] cofactor, whose presence was speculated to enhance the GTPase activity of FeoB (Hsueh, K.-L., et al., J. Bacteriol. 2013 195(20): 4726-34). We present results here that support and extend that hypothesis. We monitored the GTPase activity of FeoB by NMR spectroscopy and found that the presence of 7% FeoC-[4Fe-4S] (the highest level of cofactor achieved in vitro) increased the GTPase rate of NFeoB by 3.6-fold over NFeoB. The effect depends on the oxidation state of the cluster; with reduction of the cluster to [4Fe-4S] the GTPase greatly decreased the GTPase rate. From the effects of point mutations in FeoC on GTPase rates, we conclude that Lys62 and Lys68 on FeoC each contribute to increased GTPase activity on NFeoB. Mutation of Thr37 of NFeoB to Ser nearly abolished the GTPase activity. The GTPase activity of the isolated K. pneumoniae NFeoB-FeoC complex (NFeoBC) was found to be higher in KCl than in NaCl solution. We solved the X-ray structure of the NFeoBC crystallized from KCl and compared it with a prior X-ray structure crystalized from NaCl. We propose a hypothesis, consistent with these results, to explain the factors that influence the GTPase activity. Bacteria may use the oxygen-sensitive cluster as a sensor to up-regulate the gate closing speed.
细菌依赖亚铁转运(Feo)系统来摄取亚铁(Fe)。Feo 系统对于病原体的定植和毒力至关重要。在γ-变形菌中,该系统由 FeoA、FeoB 和 FeoC 组成。FeoA 的功能仍不清楚。FeoB 可能形成通道,其调节被认为涉及它的 GTPase 结构域(其 NFeoB 结构域的一部分)。肺炎克雷伯氏菌的 FeoC 被发现含有一个[4Fe4S]辅因子,其存在被推测可以增强 FeoB 的 GTPase 活性(Hsueh, K.-L., et al., J. Bacteriol. 2013 195(20): 4726-34)。我们在这里提出的结果支持并扩展了该假说。我们通过 NMR 光谱监测 FeoB 的 GTPase 活性,发现存在 7%的 FeoC-[4Fe-4S](体外达到的最高辅因子水平)可使 NFeoB 的 GTPase 速率提高 3.6 倍。这种效应取决于簇的氧化状态;当簇还原为[4Fe-4S]时,GTPase 大大降低了 GTPase 速率。从 FeoC 中的点突变对 GTPase 速率的影响,我们得出结论,FeoC 上的 Lys62 和 Lys68 各自对 NFeoB 的 GTPase 活性增加有贡献。NFeoB 上 Thr37 突变为 Ser 几乎完全消除了 GTPase 活性。发现从 KCl 中结晶的分离的肺炎克雷伯氏菌 NFeoB-FeoC 复合物(NFeoBC)的 GTPase 活性高于 NaCl 溶液中的活性。我们解决了从 KCl 结晶的 NFeoBC 的 X 射线结构,并将其与从 NaCl 结晶的先前 X 射线结构进行了比较。我们提出了一个假设,与这些结果一致,以解释影响 GTPase 活性的因素。细菌可能将氧气敏感的簇用作传感器来上调门关闭速度。