Suppr超能文献

使用下一代储层计算学习时空混沌

Learning spatiotemporal chaos using next-generation reservoir computing.

作者信息

Barbosa Wendson A S, Gauthier Daniel J

机构信息

Department of Physics, The Ohio State University, 191 W. Woodruff Ave., Columbus, Ohio 43210, USA.

出版信息

Chaos. 2022 Sep;32(9):093137. doi: 10.1063/5.0098707.

Abstract

Forecasting the behavior of high-dimensional dynamical systems using machine learning requires efficient methods to learn the underlying physical model. We demonstrate spatiotemporal chaos prediction using a machine learning architecture that, when combined with a next-generation reservoir computer, displays state-of-the-art performance with a computational time - times faster for training process and training data set ∼ times smaller than other machine learning algorithms. We also take advantage of the translational symmetry of the model to further reduce the computational cost and training data, each by a factor of ∼10.

摘要

使用机器学习预测高维动力系统的行为需要有效的方法来学习潜在的物理模型。我们展示了使用一种机器学习架构进行时空混沌预测,当该架构与下一代储层计算机相结合时,在计算时间方面展现出了最先进的性能——训练过程快 倍,训练数据集比其他机器学习算法小约 倍。我们还利用模型的平移对称性进一步降低计算成本和训练数据,二者均降低了约 10 倍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验