Barbosa Wendson A S, Gauthier Daniel J
Department of Physics, The Ohio State University, 191 W. Woodruff Ave., Columbus, Ohio 43210, USA.
Chaos. 2022 Sep;32(9):093137. doi: 10.1063/5.0098707.
Forecasting the behavior of high-dimensional dynamical systems using machine learning requires efficient methods to learn the underlying physical model. We demonstrate spatiotemporal chaos prediction using a machine learning architecture that, when combined with a next-generation reservoir computer, displays state-of-the-art performance with a computational time - times faster for training process and training data set ∼ times smaller than other machine learning algorithms. We also take advantage of the translational symmetry of the model to further reduce the computational cost and training data, each by a factor of ∼10.
使用机器学习预测高维动力系统的行为需要有效的方法来学习潜在的物理模型。我们展示了使用一种机器学习架构进行时空混沌预测,当该架构与下一代储层计算机相结合时,在计算时间方面展现出了最先进的性能——训练过程快 倍,训练数据集比其他机器学习算法小约 倍。我们还利用模型的平移对称性进一步降低计算成本和训练数据,二者均降低了约 10 倍。