Gauthier Daniel J, Fischer Ingo, Röhm André
Department of Physics, The Ohio State University, 191 West Woodruff Ave., Columbus, Ohio 43210, USA.
Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (CSIC-UIB), Campus Universitat Illes Balears, E-07122 Palma de Mallorca, Spain.
Chaos. 2022 Nov;32(11):113107. doi: 10.1063/5.0116784.
Reservoir computing is a machine learning approach that can generate a surrogate model of a dynamical system. It can learn the underlying dynamical system using fewer trainable parameters and, hence, smaller training data sets than competing approaches. Recently, a simpler formulation, known as next-generation reservoir computing, removed many algorithm metaparameters and identified a well-performing traditional reservoir computer, thus simplifying training even further. Here, we study a particularly challenging problem of learning a dynamical system that has both disparate time scales and multiple co-existing dynamical states (attractors). We compare the next-generation and traditional reservoir computer using metrics quantifying the geometry of the ground-truth and forecasted attractors. For the studied four-dimensional system, the next-generation reservoir computing approach uses ∼ 1.7 × less training data, requires × shorter "warmup" time, has fewer metaparameters, and has an ∼ 100 × higher accuracy in predicting the co-existing attractor characteristics in comparison to a traditional reservoir computer. Furthermore, we demonstrate that it predicts the basin of attraction with high accuracy. This work lends further support to the superior learning ability of this new machine learning algorithm for dynamical systems.
储层计算是一种机器学习方法,它可以生成动力系统的替代模型。与其他竞争方法相比,它能够使用更少的可训练参数以及更小的训练数据集来学习潜在的动力系统。最近,一种更简单的形式,即所谓的下一代储层计算,去除了许多算法元参数,并确定了一种性能良好的传统储层计算机,从而进一步简化了训练。在此,我们研究一个特别具有挑战性的问题,即学习一个具有不同时间尺度和多个共存动力状态(吸引子)的动力系统。我们使用量化真实吸引子和预测吸引子几何形状的指标来比较下一代储层计算机和传统储层计算机。对于所研究的四维系统,与传统储层计算机相比,下一代储层计算方法使用的训练数据少约1.7倍,所需的“预热”时间短×倍,元参数更少,并且在预测共存吸引子特征方面的准确率高约100倍。此外,我们证明它能够高精度地预测吸引域。这项工作进一步支持了这种用于动力系统的新机器学习算法具有卓越的学习能力。