Wang Hao, Hu Jianqi, Baek YoonSeok, Tsuchiyama Kohei, Joly Malo, Liu Qiang, Gigan Sylvain
Laboratoire Kastler Brossel, École Normale Supérieure-Paris Sciences et Lettres (PSL) Research University, Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), UMR 8552, Collège de France, 24 rue Lhomond, 75005, Paris, France.
State Key Laboratory of Precision Space-time Information Sensing Technology, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China.
Light Sci Appl. 2025 Jul 21;14(1):245. doi: 10.1038/s41377-025-01927-6.
Artificial neural networks with internal dynamics exhibit remarkable capability in processing information. Reservoir computing (RC) is a canonical example that features rich computing expressivity and compatibility with physical implementations for enhanced efficiency. Recently, a new RC paradigm known as next generation reservoir computing (NGRC) further improves expressivity but compromises its physical openness, posing challenges for realizations in physical systems. Here we demonstrate optical NGRC with computations performed by light scattering through disordered media. In contrast to conventional optical RC implementations, we directly and solely drive our optical reservoir with time-delayed inputs. Much like digital NGRC that relies on polynomial features of delayed inputs, our optical reservoir also implicitly generates these polynomial features for desired functionalities. By leveraging the domain knowledge of the reservoir inputs, we show that the optical NGRC not only predicts the short-term dynamics of the low-dimensional Lorenz63 and large-scale Kuramoto-Sivashinsky chaotic time series, but also replicates their long-term ergodic properties. Optical NGRC shows superiority in shorter training length and fewer hyperparameters compared to conventional optical RC based on scattering media, while achieving better forecasting performance. Our optical NGRC framework may inspire the realization of NGRC in other physical RC systems, new applications beyond time-series processing, and the development of deep and parallel architectures broadly.
具有内部动态特性的人工神经网络在信息处理方面展现出卓越能力。储层计算(RC)就是一个典型例子,它具有丰富的计算表现力,并且与物理实现方式兼容,从而提高了效率。最近,一种名为下一代储层计算(NGRC)的新RC范式进一步提升了表现力,但牺牲了其物理开放性,给在物理系统中的实现带来了挑战。在此,我们展示了通过光在无序介质中散射进行计算的光学NGRC。与传统的光学RC实现方式不同,我们直接且仅用时延输入驱动我们的光学储层。与依赖时延输入多项式特征的数字NGRC非常相似,我们的光学储层也隐式地生成这些多项式特征以实现所需功能。通过利用储层输入的领域知识,我们表明光学NGRC不仅能预测低维Lorenz63和大规模Kuramoto - Sivashinsky混沌时间序列的短期动态,还能复制它们的长期遍历特性。与基于散射介质的传统光学RC相比,光学NGRC在训练长度更短、超参数更少的情况下表现出优越性,同时实现了更好的预测性能。我们的光学NGRC框架可能会激发在其他物理RC系统中实现NGRC、超越时间序列处理的新应用以及广泛的深度和并行架构的发展。