Suppr超能文献

光学下一代储层计算。

Optical next generation reservoir computing.

作者信息

Wang Hao, Hu Jianqi, Baek YoonSeok, Tsuchiyama Kohei, Joly Malo, Liu Qiang, Gigan Sylvain

机构信息

Laboratoire Kastler Brossel, École Normale Supérieure-Paris Sciences et Lettres (PSL) Research University, Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), UMR 8552, Collège de France, 24 rue Lhomond, 75005, Paris, France.

State Key Laboratory of Precision Space-time Information Sensing Technology, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China.

出版信息

Light Sci Appl. 2025 Jul 21;14(1):245. doi: 10.1038/s41377-025-01927-6.

Abstract

Artificial neural networks with internal dynamics exhibit remarkable capability in processing information. Reservoir computing (RC) is a canonical example that features rich computing expressivity and compatibility with physical implementations for enhanced efficiency. Recently, a new RC paradigm known as next generation reservoir computing (NGRC) further improves expressivity but compromises its physical openness, posing challenges for realizations in physical systems. Here we demonstrate optical NGRC with computations performed by light scattering through disordered media. In contrast to conventional optical RC implementations, we directly and solely drive our optical reservoir with time-delayed inputs. Much like digital NGRC that relies on polynomial features of delayed inputs, our optical reservoir also implicitly generates these polynomial features for desired functionalities. By leveraging the domain knowledge of the reservoir inputs, we show that the optical NGRC not only predicts the short-term dynamics of the low-dimensional Lorenz63 and large-scale Kuramoto-Sivashinsky chaotic time series, but also replicates their long-term ergodic properties. Optical NGRC shows superiority in shorter training length and fewer hyperparameters compared to conventional optical RC based on scattering media, while achieving better forecasting performance. Our optical NGRC framework may inspire the realization of NGRC in other physical RC systems, new applications beyond time-series processing, and the development of deep and parallel architectures broadly.

摘要

具有内部动态特性的人工神经网络在信息处理方面展现出卓越能力。储层计算(RC)就是一个典型例子,它具有丰富的计算表现力,并且与物理实现方式兼容,从而提高了效率。最近,一种名为下一代储层计算(NGRC)的新RC范式进一步提升了表现力,但牺牲了其物理开放性,给在物理系统中的实现带来了挑战。在此,我们展示了通过光在无序介质中散射进行计算的光学NGRC。与传统的光学RC实现方式不同,我们直接且仅用时延输入驱动我们的光学储层。与依赖时延输入多项式特征的数字NGRC非常相似,我们的光学储层也隐式地生成这些多项式特征以实现所需功能。通过利用储层输入的领域知识,我们表明光学NGRC不仅能预测低维Lorenz63和大规模Kuramoto - Sivashinsky混沌时间序列的短期动态,还能复制它们的长期遍历特性。与基于散射介质的传统光学RC相比,光学NGRC在训练长度更短、超参数更少的情况下表现出优越性,同时实现了更好的预测性能。我们的光学NGRC框架可能会激发在其他物理RC系统中实现NGRC、超越时间序列处理的新应用以及广泛的深度和并行架构的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8dd/12280216/97c8a48fefab/41377_2025_1927_Fig1_HTML.jpg

相似文献

1
Optical next generation reservoir computing.
Light Sci Appl. 2025 Jul 21;14(1):245. doi: 10.1038/s41377-025-01927-6.
7
Stigma Management Strategies of Autistic Social Media Users.
Autism Adulthood. 2025 May 28;7(3):273-282. doi: 10.1089/aut.2023.0095. eCollection 2025 Jun.
9
Antidepressants for pain management in adults with chronic pain: a network meta-analysis.
Health Technol Assess. 2024 Oct;28(62):1-155. doi: 10.3310/MKRT2948.
10
Reading aids for adults with low vision.
Cochrane Database Syst Rev. 2018 Apr 17;4(4):CD003303. doi: 10.1002/14651858.CD003303.pub4.

本文引用的文献

3
Emerging opportunities and challenges for the future of reservoir computing.
Nat Commun. 2024 Mar 6;15(1):2056. doi: 10.1038/s41467-024-45187-1.
4
Extreme Events Prediction from Nonlocal Partial Information in a Spatiotemporally Chaotic Microcavity Laser.
Phys Rev Lett. 2023 Jun 2;130(22):223801. doi: 10.1103/PhysRevLett.130.223801.
5
Learning spatiotemporal chaos using next-generation reservoir computing.
Chaos. 2022 Sep;32(9):093137. doi: 10.1063/5.0098707.
6
Brain-inspired computing needs a master plan.
Nature. 2022 Apr;604(7905):255-260. doi: 10.1038/s41586-021-04362-w. Epub 2022 Apr 13.
7
Photonic matrix multiplication lights up photonic accelerator and beyond.
Light Sci Appl. 2022 Feb 3;11(1):30. doi: 10.1038/s41377-022-00717-8.
8
Hierarchical-Task Reservoir for Online Semantic Analysis From Continuous Speech.
IEEE Trans Neural Netw Learn Syst. 2022 Jun;33(6):2654-2663. doi: 10.1109/TNNLS.2021.3095140. Epub 2022 Jun 1.
9
Next generation reservoir computing.
Nat Commun. 2021 Sep 21;12(1):5564. doi: 10.1038/s41467-021-25801-2.
10
Domain-driven models yield better predictions at lower cost than reservoir computers in Lorenz systems.
Philos Trans A Math Phys Eng Sci. 2021 Apr 5;379(2194):20200246. doi: 10.1098/rsta.2020.0246. Epub 2021 Feb 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验