Sells Sarah N, Podruzny Kevin M, Nowak J Joshua, Smucker Ty D, Parks Tyler W, Boyd Diane K, Nelson Abigail A, Lance Nathan J, Inman Robert M, Gude Justin A, Bassing Sarah B, Loonam Kenneth E, Mitchell Michael S
Wildlife Biology Program, University of Montana, Missoula, Montana, USA.
Montana Fish, Wildlife and Parks, Helena, Montana, USA.
Ecol Appl. 2022 Dec;32(8):e2714. doi: 10.1002/eap.2714. Epub 2022 Oct 2.
A clear connection between basic research and applied management is often missing or difficult to discern. We present a case study of integration of basic research with applied management for estimating abundance of gray wolves (Canis lupus) in Montana, USA. Estimating wolf abundance is a key component of wolf management but is costly and time intensive as wolf populations continue to grow. We developed a multimodel approach using an occupancy model, mechanistic territory model, and empirical group size model to improve abundance estimates while reducing monitoring effort. Whereas field-based wolf counts generally rely on costly, difficult-to-collect monitoring data, especially for larger areas or population sizes, our approach efficiently uses readily available wolf observation data and introduces models focused on biological mechanisms underlying territorial and social behavior. In a three-part process, the occupancy model first estimates the extent of wolf distribution in Montana, based on environmental covariates and wolf observations. The spatially explicit mechanistic territory model predicts territory sizes using simple behavioral rules and data on prey resources, terrain ruggedness, and human density. Together, these models predict the number of packs. An empirical pack size model based on 14 years of data demonstrates that pack sizes are positively related to local densities of packs, and negatively related to terrain ruggedness, local mortalities, and intensity of harvest management. Total abundance estimates for given areas are derived by combining estimated numbers of packs and pack sizes. We estimated the Montana wolf population to be smallest in the first year of our study, with 91 packs and 654 wolves in 2007, followed by a population peak in 2011 with 1252 wolves. The population declined ~6% thereafter, coincident with implementation of legal harvest in Montana. Recent numbers have largely stabilized at an average of 191 packs and 1141 wolves from 2016 to 2020. This new approach accounts for biologically based, spatially explicit predictions of behavior to provide more accurate estimates of carnivore abundance at finer spatial scales. By integrating basic and applied research, our approach can therefore better inform decision-making and meet management needs.
基础研究与应用管理之间的明确联系常常缺失或难以辨别。我们展示了一个基础研究与应用管理相结合的案例研究,该研究用于估计美国蒙大拿州灰狼(Canis lupus)的数量。估计狼的数量是狼管理的关键组成部分,但随着狼种群数量持续增长,这一过程成本高昂且耗时。我们开发了一种多模型方法,使用占用模型、机制性领地模型和经验性群体规模模型,以在减少监测工作量的同时提高数量估计的准确性。虽然基于实地的狼数量统计通常依赖于成本高昂、难以收集的监测数据,特别是对于较大区域或种群规模而言,但我们的方法有效地利用了 readily available wolf observation data(此处疑有误,推测应为“现成的狼观察数据”),并引入了专注于领地和社会行为背后生物学机制的模型。在一个分为三个部分的过程中,占用模型首先根据环境协变量和狼的观察数据估计蒙大拿州狼的分布范围。空间明确的机制性领地模型使用简单的行为规则以及关于猎物资源、地形崎岖度和人类密度的数据来预测领地大小。这两个模型共同预测狼群数量。一个基于14年数据的经验性狼群规模模型表明,狼群规模与当地狼群密度呈正相关,与地形崎岖度、当地死亡率和收获管理强度呈负相关。给定区域的总数量估计是通过结合估计的狼群数量和狼群规模得出的。我们估计蒙大拿州的狼种群数量在研究的第一年最小,2007年有91个狼群和654只狼,随后在2011年达到种群峰值,有1252只狼。此后种群数量下降了约6%,这与蒙大拿州实施合法捕杀相吻合。最近的数据在很大程度上趋于稳定,2016年至2020年平均有191个狼群和1141只狼。这种新方法考虑了基于生物学的、空间明确的行为预测,以便在更精细的空间尺度上提供更准确的食肉动物数量估计。通过整合基础研究和应用研究,我们的方法因此可以更好地为决策提供信息并满足管理需求。