Mattioli Luca, Canu Antonio, Passilongo Daniela, Scandura Massimo, Apollonio Marco
Settore Attività Faunistico Venatoria, Pesca Dilettantistica, Pesca in mare, Regione Toscana, Via A. Testa 2, I-52100 Arezzo, Italy.
2Department of Veterinary Medicine, University of Sassari, via Vienna 2, I-07100 Sassari, Italy.
Front Zool. 2018 Oct 3;15:38. doi: 10.1186/s12983-018-0281-x. eCollection 2018.
Density estimation is a key issue in wildlife management but is particularly challenging and labour-intensive for elusive species. Recently developed approaches based on remotely collected data and capture-recapture models, though representing a valid alternative to more traditional methods, have found little application to species with limited morphological variation. We implemented a camera trap capture-recapture study to survey wolf packs in a 560-km area of Central Italy. Individual recognition of focal animals (alpha) in the packs was possible by relying on morphological and behavioural traits and was validated by non-invasive genotyping and inter-observer agreement tests. Two types (Bayesian and likelihood-based) of spatially explicit capture-recapture (SCR) models were fitted on wolf pack capture histories, thus obtaining an estimation of pack density in the area.
In two sessions of camera trapping surveys (2014 and 2015), we detected a maximum of 12 wolf packs. A Bayesian model implementing a half-normal detection function without a trap-specific response provided the most robust result, corresponding to a density of 1.21 ± 0.27 packs/100 km in 2015. Average pack size varied from 3.40 (summer 2014, excluding pups and lone-transient wolves) to 4.17 (late winter-spring 2015, excluding lone-transient wolves).
We applied for the first time a camera-based SCR approach in wolves, providing the first robust estimate of wolf pack density for an area of Italy. We showed that this method is applicable to wolves under the following conditions: ) the existence of sufficient phenotypic/behavioural variation and the recognition of focal individuals (i.e. alpha, verified by non-invasive genotyping); ) the investigated area is sufficiently large to include a minimum number of packs (ideally 10); ) a pilot study is carried out to pursue an adequate sampling design and to train operators on individual wolf recognition. We believe that replicating this approach in other areas can allow for an assessment of density variation across the wolf range and would provide a reliable reference parameter for ecological studies.
密度估计是野生动物管理中的一个关键问题,但对于难以捉摸的物种来说,这一过程尤其具有挑战性且耗费人力。最近基于远程收集的数据和捕获-再捕获模型开发的方法,虽然是传统方法的有效替代方案,但在形态变异有限的物种中应用较少。我们开展了一项相机陷阱捕获-再捕获研究,以调查意大利中部一个560平方公里区域内的狼群。通过依靠形态和行为特征,能够对狼群中的焦点动物(头狼)进行个体识别,并通过非侵入性基因分型和观察者间一致性测试进行了验证。将两种类型(贝叶斯和基于似然性)的空间明确捕获-再捕获(SCR)模型应用于狼群的捕获历史记录,从而获得该区域狼群密度的估计值。
在两次相机陷阱调查阶段(2014年和2015年),我们最多检测到12个狼群。一个采用无陷阱特定响应的半正态检测函数的贝叶斯模型给出了最可靠的结果,对应2015年的密度为1.21±0.27个狼群/100平方公里。平均狼群规模从3.40(2014年夏季,不包括幼崽和单独的游荡狼)到4.17(2015年冬末至春季,不包括单独的游荡狼)不等。
我们首次在狼中应用了基于相机的SCR方法,为意大利一个地区的狼群密度提供了首个可靠估计。我们表明,该方法在以下条件下适用于狼:1)存在足够的表型/行为变异且能识别焦点个体(即头狼,通过非侵入性基因分型验证);2)调查区域足够大,以包含最少数量的狼群(理想情况下为10个);3)开展一项试点研究,以进行充分的抽样设计并培训操作人员识别单个狼。我们相信在其他地区复制这种方法可以评估整个狼分布范围内的密度变化,并为生态研究提供可靠的参考参数。