Jiménez José, García Emilio J, Llaneza Luis, Palacios Vicente, González Luis Mariano, García-Domínguez Francisco, Múñoz-Igualada Jaime, López-Bao José Vicente
Institute of Research in Game Resources-CSIC, Ronda de Toledo s/n, 13071, Ciudad Real, Spain.
A.RE.NA. Asesores en Recursos Naturales, S.L. Perpetuo Socorro nº12-Entresuelo, 2B, 27003, Lugo, Spain.
Conserv Biol. 2016 Aug;30(4):883-93. doi: 10.1111/cobi.12685. Epub 2016 May 4.
In many cases, the first step in large-carnivore management is to obtain objective, reliable, and cost-effective estimates of population parameters through procedures that are reproducible over time. However, monitoring predators over large areas is difficult, and the data have a high level of uncertainty. We devised a practical multimethod and multistate modeling approach based on Bayesian hierarchical-site-occupancy models that combined multiple survey methods to estimate different population states for use in monitoring large predators at a regional scale. We used wolves (Canis lupus) as our model species and generated reliable estimates of the number of sites with wolf reproduction (presence of pups). We used 2 wolf data sets from Spain (Western Galicia in 2013 and Asturias in 2004) to test the approach. Based on howling surveys, the naïve estimation (i.e., estimate based only on observations) of the number of sites with reproduction was 9 and 25 sites in Western Galicia and Asturias, respectively. Our model showed 33.4 (SD 9.6) and 34.4 (3.9) sites with wolf reproduction, respectively. The number of occupied sites with wolf reproduction was 0.67 (SD 0.19) and 0.76 (0.11), respectively. This approach can be used to design more cost-effective monitoring programs (i.e., to define the sampling effort needed per site). Our approach should inspire well-coordinated surveys across multiple administrative borders and populations and lead to improved decision making for management of large carnivores on a landscape level. The use of this Bayesian framework provides a simple way to visualize the degree of uncertainty around population-parameter estimates and thus provides managers and stakeholders an intuitive approach to interpreting monitoring results. Our approach can be widely applied to large spatial scales in wildlife monitoring where detection probabilities differ between population states and where several methods are being used to estimate different population parameters.
在许多情况下,大型食肉动物管理的第一步是通过可随时间重复的程序,获得关于种群参数的客观、可靠且具有成本效益的估计值。然而,在大面积区域监测食肉动物很困难,并且数据具有高度不确定性。我们基于贝叶斯分层地点占用模型设计了一种实用的多方法和多状态建模方法,该方法结合了多种调查方法来估计不同的种群状态,以用于区域尺度上大型食肉动物的监测。我们将狼(Canis lupus)作为我们的模型物种,并对有狼繁殖的地点数量(幼崽的存在情况)生成了可靠的估计值。我们使用了来自西班牙的两个狼数据集(2013年的加利西亚西部和2004年的阿斯图里亚斯)来测试该方法。基于嚎叫调查,对有繁殖现象地点数量的简单估计(即仅基于观察的估计)在加利西亚西部和阿斯图里亚斯分别为9个和25个地点。我们的模型分别显示有狼繁殖的地点为33.4(标准差9.6)和34.4(3.9)个。有狼繁殖的被占用地点数量分别为0.67(标准差0.19)和0.76(0.11)。这种方法可用于设计更具成本效益的监测计划(即确定每个地点所需的采样工作量)。我们的方法应能激发跨多个行政边界和种群的协调良好的调查,并在景观层面上改善大型食肉动物管理的决策制定。这种贝叶斯框架的使用提供了一种简单的方法来可视化种群参数估计周围的不确定性程度,从而为管理者和利益相关者提供一种直观的方式来解释监测结果。我们的方法可广泛应用于野生动物监测的大空间尺度,在这些尺度上,不同种群状态的检测概率不同,并且正在使用多种方法来估计不同种群参数之处。