Suppr超能文献

磁共振成像特征及肿瘤血管生成、细胞密度和增殖率的组织病理学特征可将肺癌脑转移瘤的两种不同生长方式区分开来。

MR imaging profile and histopathological characteristics of tumour vasculature, cell density and proliferation rate define two distinct growth patterns of human brain metastases from lung cancer.

机构信息

Institute of Neuroradiology, University Hospital, Goethe University, Frankfurt am Main, Germany.

Department of Neurology, University Hospital, Frankfurt am Main, Germany.

出版信息

Neuroradiology. 2023 Feb;65(2):275-285. doi: 10.1007/s00234-022-03060-2. Epub 2022 Oct 3.

Abstract

PURPOSE

Non-invasive prediction of the tumour of origin giving rise to brain metastases (BMs) using MRI measurements obtained in radiological routine and elucidating the biological basis by matched histopathological analysis.

METHODS

Preoperative MRI and histological parameters of 95 BM patients (female, 50; mean age 59.6 ± 11.5 years) suffering from different primary tumours were retrospectively analysed. MR features were assessed by region of interest (ROI) measurements of signal intensities on unenhanced T1-, T2-, diffusion-weighted imaging and apparent diffusion coefficient (ADC) normalised to an internal reference ROI. Furthermore, we assessed BM size and oedema as well as cell density, proliferation rate, microvessel density and vessel area as histopathological parameters.

RESULTS

Applying recursive partitioning conditional inference trees, only histopathological parameters could stratify the primary tumour entities. We identified two distinct BM growth patterns depending on their proliferative status: Ki67 BMs were larger (p = 0.02), showed less peritumoural oedema (p = 0.02) and showed a trend towards higher cell density (p = 0.05). Furthermore, Ki67 BMs were associated with higher DWI signals (p = 0.03) and reduced ADC values (p = 0.004). Vessel density was strongly reduced in Ki67 BM (p < 0.001). These features differentiated between lung cancer BM entities (p ≤ 0.03 for all features) with SCLCs representing predominantly the Ki67 group, while NSCLCs rather matching with Ki67 features.

CONCLUSION

Interpretable and easy to obtain MRI features may not be sufficient to predict directly the primary tumour entity of BM but seem to have the potential to aid differentiating high- and low-proliferative BMs, such as SCLC and NSCLC.

摘要

目的

利用在放射学常规中获得的 MRI 测量值,对脑转移瘤(BMs)的肿瘤起源进行非侵入性预测,并通过匹配的组织病理学分析阐明其生物学基础。

方法

回顾性分析了 95 例 BM 患者(女性 50 例;平均年龄 59.6±11.5 岁)的术前 MRI 和组织病理学参数,这些患者患有不同的原发性肿瘤。通过对未增强 T1、T2、弥散加权成像和表观弥散系数(ADC)的 ROI 信号强度进行 ROI 测量来评估 MRI 特征,并将其归一化为内部参考 ROI。此外,我们评估了 BM 大小和水肿以及细胞密度、增殖率、微血管密度和血管面积等组织病理学参数。

结果

应用递归分区条件推断树,只有组织病理学参数才能对原发性肿瘤实体进行分层。我们根据其增殖状态确定了两种不同的 BM 生长模式:Ki67 BM 更大(p=0.02),表现出较少的瘤周水肿(p=0.02),并且表现出更高的细胞密度趋势(p=0.05)。此外,Ki67 BM 与更高的 DWI 信号(p=0.03)和降低的 ADC 值(p=0.004)相关。Ki67 BM 中的血管密度明显降低(p<0.001)。这些特征区分了肺癌 BM 实体(所有特征的 p≤0.03),SCLC 主要代表 Ki67 组,而 NSCLC 则与 Ki67 特征更为匹配。

结论

可解释且易于获得的 MRI 特征可能不足以直接预测 BM 的原发性肿瘤实体,但似乎有潜力辅助区分高增殖性和低增殖性 BM,如 SCLC 和 NSCLC。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27dd/9859874/7c77a7a3755c/234_2022_3060_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验