Sun Yiyao, Wang Yan, Jiang Mingchen, Jia Wei, Chen Huanhuan, Wang Huan, Ding Yuqi, Wang Xiaoyu, Yang Chunna, Sun Bo, Zhao Peng, Jiang Wenyan
School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, P. R. China.
Department of Radiology, The People's Hospital of Liaoning Province, Shenyang, Liaoning, P. R. China.
Med Phys. 2025 May;52(5):3075-3087. doi: 10.1002/mp.17610. Epub 2025 Jan 6.
This study aims to explore the value of habitat-based magnetic resonance imaging (MRI) radiomics for predicting the origin of brain metastasis (BM).
To investigate whether habitat-based radiomics can identify the metastatic tumor type of BM and whether an imaging-based model that integrates the volume of peritumoral edema (VPE) can enhance predictive performance.
A primary cohort was developed with 384 patients from two centers, which comprises 734 BM lesions. An independent cohort was developed with 28 patients from a third center, which comprises 70 BM lesions. All patients underwent T1-weighted contrast-enhanced (T1CE) and T2-weighted (T2W) MRI scans before treatment. Radiomics features were extracted from tumor active area (TAA) and peritumoral edema area (PEA) selected using the least absolute shrinkage and selection operator (LASSO) to construct radiomics signatures (Rads). The Rads were further integrated with VPE to build combined models for predicting the metastatic type of BM. Performance of the models were assessed through receiver operating characteristic (ROC) curve analysis.
Rads derived from TAA and PEA both showed predictive power for identifying the origin of BM. The developed combined models generated the best performance in the training (AUCs, lung cancer [LC]/non-lung cancer [NLC] vs. small cell lung cancer [SCLC]/non-small cell lung cancer [NSCLC] vs. breast cancer [BC]/gastrointestinal cancer [GIC], 0.870 vs. 0.946 vs. 0.886), internal validation (area under the receiver operating characteristic curves [AUCs], LC/NLC vs. SCLC/NSCLC vs. BC/GIC, 0.786 vs. 0.863 vs. 0.836) and external validation (AUCs, LC /NLC vs. SCLC/NSCLC vs. BC/GIC, 0.805 vs. 0.877 vs. 0.774) cohort.
The developed habitat-based radiomics models can effectively identify the metastatic tumor type of BM and may be considered as a potential preoperative basis for timely treatment planning.
本研究旨在探讨基于瘤周环境的磁共振成像(MRI)放射组学在预测脑转移瘤(BM)起源方面的价值。
研究基于瘤周环境的放射组学能否识别BM的转移瘤类型,以及整合瘤周水肿体积(VPE)的影像模型是否能提高预测性能。
建立一个主要队列,纳入来自两个中心的384例患者,共734个BM病灶。建立一个独立队列,纳入来自第三个中心的28例患者,共70个BM病灶。所有患者在治疗前均接受了T1加权增强扫描(T1CE)和T2加权扫描(T2W)。从使用最小绝对收缩和选择算子(LASSO)选择的肿瘤活性区域(TAA)和瘤周水肿区域(PEA)中提取放射组学特征,以构建放射组学特征(Rads)。将Rads与VPE进一步整合,建立预测BM转移类型的联合模型。通过受试者操作特征(ROC)曲线分析评估模型的性能。
源自TAA和PEA的Rads在识别BM起源方面均显示出预测能力。所建立的联合模型在训练队列(曲线下面积[AUC],肺癌[LC]/非肺癌[NLC]对比小细胞肺癌[SCLC]/非小细胞肺癌[NSCLC]对比乳腺癌[BC]/胃肠道癌[GIC],分别为0.870、0.946、0.886)、内部验证队列(ROC曲线下面积[AUC],LC/NLC对比SCLC/NSCLC对比BC/GIC,分别为0.786、0.863、0.836)和外部验证队列(AUC,LC/NLC对比SCLC/NSCLC对比BC/GIC,分别为0.805、0.877、0.774)中表现最佳。
所建立的基于瘤周环境的放射组学模型能够有效识别BM的转移瘤类型,可作为及时制定治疗方案的潜在术前依据。