Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.
Shandong First Medical University, Jinan, China.
J Magn Reson Imaging. 2023 Nov;58(5):1624-1635. doi: 10.1002/jmri.28695. Epub 2023 Mar 25.
Brain metastasis (BM) is a serious neurological complication of cancer of different origins. The value of deep learning (DL) to identify multiple types of primary origins remains unclear.
To distinguish primary site of BM and identify the best DL models.
Retrospective.
A total of 449 BM derived from 214 patients (49.5% for female, mean age 58 years) (100 from small cell lung cancer [SCLC], 125 from non-small cell lung cancer [NSCLC], 116 from breast cancer [BC], and 108 from gastrointestinal cancer [GIC]) were included.
FIELD STRENGTH/SEQUENCE: A 3-T, T1 turbo spin echo (T1-TSE), T2-TSE, T2FLAIR-TSE, DWI echo-planar imaging (DWI-EPI) and contrast-enhanced T1-TSE (CE T1-TSE).
Lesions were divided into training (n = 285, 153 patients), testing (n = 122, 93 patients), and independent testing cohorts (n = 42, 34 patients). Three-dimensional residual network (3D-ResNet), named 3D ResNet6 and 3D ResNet 18, was proposed for identifying the four origins based on single MRI and combined MRI (T1WI + T2-FLAIR + DWI, CE-T1WI + DWI, CE-T1WI + T2WI + DWI). DL model was used to distinguish lung cancer from non-lung cancer; then SCLC vs. NSCLC for lung cancer classification and BC vs. GIC for non-lung cancer classification was performed. A subjective visual analysis was implemented and compared with DL models. Gradient-weighted class activation mapping (Grad-CAM) was used to visualize the model by heatmaps.
The area under the receiver operating characteristics curve (AUC) assess each classification performance.
3D ResNet18 with Grad-CAM and AIC showed better performance than 3DResNet6, 3DResNet18 and the radiologist for distinguishing lung cancer from non-lung cancer, SCLC from NSCLC, and BC from GIC. For single MRI sequence, T1WI, DWI, and CE-T1WI performed best for lung cancer vs. non-lung cancer, SCLC vs. NSCLC, and BC vs. GIC classifications. The AUC ranged from 0.675 to 0.876 and from 0.684 to 0.800 regarding the testing and independent testing datasets, respectively. For combined MRI sequences, the combination of CE-T1WI + T2WI + DWI performed better for BC vs. GIC (AUCs of 0.788 and 0.848 on testing and independent testing datasets, respectively), while the combined MRI approach (T1WI + T2-FLAIR + DWI, CE-T1WI + DWI) could not achieve higher AUCs for lung cancer vs. non-lung cancer, SCLC vs. NSCLC. Grad-CAM helped for model visualization by heatmaps that focused on tumor regions.
DL models may help to distinguish the origins of BM based on MRI data.
3 TECHNICAL EFFICACY: Stage 2.
脑转移(BM)是不同来源癌症的一种严重神经并发症。深度学习(DL)识别多种原发灶的价值尚不清楚。
区分 BM 的原发部位并确定最佳的 DL 模型。
回顾性。
共纳入 214 例患者的 449 个 BM(49.5%为女性,平均年龄 58 岁)(100 例来自小细胞肺癌[SCLC],125 例来自非小细胞肺癌[NSCLC],116 例来自乳腺癌[BC],108 例来自胃肠道癌[GIC])。
磁场强度/序列:3-T,T1 涡轮自旋回波(T1-TSE)、T2-TSE、T2FLAIR-TSE、DWI 回波平面成像(DWI-EPI)和对比增强 T1-TSE(CE T1-TSE)。
病变分为训练集(n=285,153 例患者)、测试集(n=122,93 例患者)和独立测试集(n=42,34 例患者)。提出了名为 3D ResNet6 和 3D ResNet18 的三维残差网络(3D-ResNet),用于基于单个 MRI 和联合 MRI(T1WI+T2-FLAIR+DWI、CE-T1WI+DWI、CE-T1WI+T2WI+DWI)识别四个起源。DL 模型用于区分肺癌和非肺癌;然后对肺癌进行 SCLC 与 NSCLC 的分类,对非肺癌进行 BC 与 GIC 的分类。进行了主观视觉分析,并与 DL 模型进行了比较。梯度加权类激活映射(Grad-CAM)用于通过热图可视化模型。
受试者工作特征曲线下的面积(AUC)评估每种分类性能。
具有 Grad-CAM 和 AIC 的 3D ResNet18 比 3DResNet6、3DResNet18 和放射科医生在区分肺癌和非肺癌、SCLC 和 NSCLC 以及 BC 和 GIC 方面表现更好。对于单个 MRI 序列,T1WI、DWI 和 CE-T1WI 在肺癌与非肺癌、SCLC 与 NSCLC 以及 BC 与 GIC 分类方面表现最佳。AUC 在测试和独立测试数据集上分别为 0.675 至 0.876 和 0.684 至 0.800。对于联合 MRI 序列,CE-T1WI+T2WI+DWI 在 BC 与 GIC 方面表现更好(在测试和独立测试数据集上的 AUC 分别为 0.788 和 0.848),而联合 MRI 方法(T1WI+T2-FLAIR+DWI、CE-T1WI+DWI)不能提高肺癌与非肺癌、SCLC 与 NSCLC 的 AUC。Grad-CAM 通过热图帮助模型可视化,重点关注肿瘤区域。
DL 模型可帮助基于 MRI 数据区分 BM 的起源。
3 级技术功效:2 级。