文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

肝脏磁共振成像用于评估肝细胞癌立体定向体部放射治疗后的治疗反应

Liver magnetic resonance imaging for evaluation of response to treatment after stereotactic body radiation therapy of hepatocellular carcinoma.

作者信息

Serafini Alessandro, Ruggeri Valeria, Inchingolo Riccardo, Gatti Marco, Guarneri Alessia, Maino Cesare, Ippolito Davide, Grazioli Luigi, Ricardi Umberto, Faletti Riccardo

机构信息

Department of Surgical Sciences, University of Turin, Turin 10126, Italy.

Department of Radiology, University of Brescia, Brescia 25123, Italy.

出版信息

World J Hepatol. 2022 Sep 27;14(9):1790-1803. doi: 10.4254/wjh.v14.i9.1790.


DOI:10.4254/wjh.v14.i9.1790
PMID:36185716
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9521449/
Abstract

BACKGROUND: Although stereotactic body radiation therapy (SBRT) is increasingly used, its application has not yet been regulated by the main international guidelines, leaving the decision to multidisciplinary teams. AIM: To assess magnetic resonance imaging (MRI) features of hepatocellular carcinoma (HCC) treated with SBRT, highlighting the efficacy of the treatment and the main aspects of the lesion before and after the procedure. METHODS: As part of a retrospective study, 49 patients who underwent SBRT for HCC between January 2013 and November 2019 were recruited. Each patient underwent a pre-treatment MRI examination with a hepatospecific contrast agent and a similar follow-up examination within 6 mo of therapy. In addition, 22 patients underwent a second follow-up examination after the first 6 mo. The following characteristics were analysed: Features analysed compared to pre-treatment MRI examination, presence or absence of infield and outfield progression, ring-like enhancement, signal hyperintensity in T2-weighted sequences in the perilesional parenchyma, capsular retraction, and "band" signal hypointensity in T1-weighted gradient echo fat saturated sequences obtained during hepatobiliary excretion. RESULTS: Signal hyperintensity in the T2-weighted sequences showed a statistically significant reduction in the number of lesions at the post-SBRT first control ( = 0.0006). Signal hyperintensity in diffusion-weighted imaging-weighted sequences was decreased at MRI first control ( 0.0001). A statistically significant increase of apparent diffusion coefficient values from a median of 1.01 to 1.38 at the first post-control was found ( 0.0001). Capsular retraction was increased at the late evaluation ( = 0.006). Band-like signal hypointensity in the hepatobiliary phase was present in 94% at the late control ( = 0.006). The study of the risk of outfield progression infield progression revealed a hazard ratio of 9. CONCLUSION: The efficacy of SBRT should be evaluated not in the first 6 mo, but at least 9 mo post-SBRT, when infield progression persists at very low rates while the risk of outfield progression increases significantly.

摘要

背景:尽管立体定向体部放射治疗(SBRT)的应用日益广泛,但其应用尚未得到主要国际指南的规范,决策权留给了多学科团队。 目的:评估接受SBRT治疗的肝细胞癌(HCC)的磁共振成像(MRI)特征,突出治疗效果以及治疗前后病变的主要方面。 方法:作为一项回顾性研究的一部分,招募了2013年1月至2019年11月期间接受SBRT治疗HCC的49例患者。每位患者在治疗前接受了使用肝特异性造影剂的MRI检查,并在治疗后6个月内进行了类似的随访检查。此外,22例患者在最初6个月后进行了第二次随访检查。分析了以下特征:与治疗前MRI检查相比分析的特征、野内和野外进展的有无、环状强化、病灶周围实质T2加权序列中的信号高强化、包膜回缩以及在肝胆排泄期获得的T1加权梯度回波脂肪饱和序列中的“带状”信号低强化。 结果:T2加权序列中的信号高强化在SBRT后的首次对照时病变数量有统计学显著减少(P = 0.0006)。扩散加权成像加权序列中的信号高强化在MRI首次对照时降低(P < 0.0001)。首次对照后发现表观扩散系数值从中位数1.01显著增加至1.38(P < 0.0001)。晚期评估时包膜回缩增加(P = 0.006)。晚期对照时94%的患者在肝胆期出现带状信号低强化(P = 0.006)。对野外进展与野内进展风险的研究显示风险比为9。 结论:SBRT的疗效不应在最初6个月评估,而应至少在SBRT后9个月评估,此时野内进展持续处于极低水平,而野外进展风险显著增加。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36ea/9521449/5c38b787fb3f/WJH-14-1790-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36ea/9521449/2c46ec492ce4/WJH-14-1790-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36ea/9521449/7dd33d47c180/WJH-14-1790-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36ea/9521449/0f792c9675dd/WJH-14-1790-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36ea/9521449/a7439c1de40e/WJH-14-1790-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36ea/9521449/c9c2db9052b5/WJH-14-1790-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36ea/9521449/e691b92e8f4e/WJH-14-1790-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36ea/9521449/72ded8b6b8f0/WJH-14-1790-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36ea/9521449/5d8b590ea70a/WJH-14-1790-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36ea/9521449/f48d9a68f074/WJH-14-1790-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36ea/9521449/8f3bba32e5d3/WJH-14-1790-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36ea/9521449/82376921d698/WJH-14-1790-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36ea/9521449/0e9656f7ca9d/WJH-14-1790-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36ea/9521449/5c38b787fb3f/WJH-14-1790-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36ea/9521449/2c46ec492ce4/WJH-14-1790-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36ea/9521449/7dd33d47c180/WJH-14-1790-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36ea/9521449/0f792c9675dd/WJH-14-1790-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36ea/9521449/a7439c1de40e/WJH-14-1790-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36ea/9521449/c9c2db9052b5/WJH-14-1790-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36ea/9521449/e691b92e8f4e/WJH-14-1790-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36ea/9521449/72ded8b6b8f0/WJH-14-1790-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36ea/9521449/5d8b590ea70a/WJH-14-1790-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36ea/9521449/f48d9a68f074/WJH-14-1790-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36ea/9521449/8f3bba32e5d3/WJH-14-1790-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36ea/9521449/82376921d698/WJH-14-1790-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36ea/9521449/0e9656f7ca9d/WJH-14-1790-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36ea/9521449/5c38b787fb3f/WJH-14-1790-g013.jpg

相似文献

[1]
Liver magnetic resonance imaging for evaluation of response to treatment after stereotactic body radiation therapy of hepatocellular carcinoma.

World J Hepatol. 2022-9-27

[2]
Gadoxetic acid-enhanced magnetic resonance imaging can predict the pathologic stage of solitary hepatocellular carcinoma.

World J Gastroenterol. 2019-6-7

[3]
Tumor response assessment by MRI following stereotactic body radiation therapy for hepatocellular carcinoma.

PLoS One. 2017-4-25

[4]
Imaging Findings Within the First 12 Months of Hepatocellular Carcinoma Treated With Stereotactic Body Radiation Therapy.

Int J Radiat Oncol Biol Phys. 2017-8-24

[5]
Hypervascular hepatocellular carcinoma 1 cm or smaller in patients with chronic liver disease: characterization with gadoxetic acid-enhanced MRI that includes diffusion-weighted imaging.

AJR Am J Roentgenol. 2011-6

[6]
Magnetic Resonance Imaging Evaluation of Hepatocellular Carcinoma Treated With Stereotactic Body Radiation Therapy: Long Term Imaging Follow-Up.

Int J Radiat Oncol Biol Phys. 2018-9-10

[7]
Value of gadoxetic acid-enhanced MRI and diffusion-weighted imaging in the differentiation of hypervascular hyperplastic nodule from small (<3 cm) hypervascular hepatocellular carcinoma in patients with alcoholic liver cirrhosis: A retrospective case-control study.

J Magn Reson Imaging. 2020-1

[8]
Liver parenchymal changes detected by MR elastography and diffusion-weighted imaging after stereotactic body radiotherapy for hepatocellular carcinoma.

Abdom Radiol (NY). 2023-11

[9]
Performance of gadoxetic acid MRI and diffusion-weighted imaging for the diagnosis of early recurrence of hepatocellular carcinoma.

Eur Radiol. 2019-8-1

[10]
Role of diffusion-weighted imaging, apparent diffusion coefficient and correlation with hepatobiliary phase findings in the differentiation of hepatocellular carcinoma from dysplastic nodules in cirrhotic liver.

Eur Radiol. 2015-4

本文引用的文献

[1]
Prospective Study of Stereotactic Body Radiation Therapy for Hepatocellular Carcinoma on Waitlist for Liver Transplant.

Hepatology. 2021-11

[2]
Giving Radiologists and Other Clinicians the Tools to Identify Radiation Effects on Imaging Studies.

Radiol Imaging Cancer. 2021-3-12

[3]
Stereotactic Ablative Radiotherapy Fractionation for Hepatocellular Carcinoma in the United States.

Cureus. 2020-6-17

[4]
Imaging post-stereotactic body radiation therapy responses for hepatocellular carcinoma: typical imaging patterns and pitfalls.

Abdom Radiol (NY). 2019-5

[5]
Evaluation of Hepatic Toxicity after Repeated Stereotactic Body Radiation Therapy for Recurrent Hepatocellular Carcinoma using Deformable Image Registration.

Sci Rep. 2018-11-1

[6]
Magnetic Resonance Imaging Evaluation of Hepatocellular Carcinoma Treated With Stereotactic Body Radiation Therapy: Long Term Imaging Follow-Up.

Int J Radiat Oncol Biol Phys. 2018-9-10

[7]
EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma.

J Hepatol. 2018-7

[8]
Radiation Dose-Volume Effects for Liver SBRT.

Int J Radiat Oncol Biol Phys. 2021-5-1

[9]
Direct dose correlation of MRI morphologic alterations of healthy liver tissue after robotic liver SBRT.

Strahlenther Onkol. 2018-2-5

[10]
Imaging Findings Within the First 12 Months of Hepatocellular Carcinoma Treated With Stereotactic Body Radiation Therapy.

Int J Radiat Oncol Biol Phys. 2017-8-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索