Wshah Safwan, Xu Beilei, Steinharter John, Reilly Clifford, Morrissette Katelin
University of Vermont, Innovation 417, Burlington, Vermont, United States.
FLX AI, Inc., New York, New York, United States.
J Med Imaging (Bellingham). 2022 Sep;9(5):054502. doi: 10.1117/1.JMI.9.5.054502. Epub 2022 Sep 30.
This is a foundational study in which multiorgan system point of care ultrasound (POCUS) and machine learning (ML) are used to mimic physician management decisions regarding the functional intravascular volume status (IVS) and need for diuretic therapy. We present this as an impactful use case of an application of ML in aided decision making for clinical practice. IVS represents complex physiologic interactions of the cardiac, renal, pulmonary, and other organ systems. In particular, we focus on vascular congestion and overload as an evolving concept in POCUS diagnosis and clinical relevance. It is critical for physicians to be able to evaluate IVS without disrupting workflow or exposing patients to unnecessary testing, radiation, or cost. This work utilized a small retrospective dataset as a feasibility test for ML binary classification of diuretic administration validated with clinical decision data. Future work will be directed toward artificial intelligence (AI) delivery at the bedside and assessment of the impact on patient-centered outcomes and physician workflow improvement.
We retrospectively reviewed and processed 1039 POCUS video clips, including cardiac, thoracic, and inferior vena cava (IVC) views. Multiorgan POCUS clips were correlated with clinical data extracted from the electronic health record and deidentified for algorithm training and validation. We implemented a two-stream three-dimensional (3D) deep learning approach that fuses heart and IVC data to perform binary classification of the need for diuretic use.
Our proposed approach achieves high classification accuracy (84%) for the determination of diuretic use with 0.84 area under the receiver operating characteristic curve.
Our two-stream 3D deep neural network is able to classify POCUS video clips that match physicians' classification for or against diuretic use with high accuracy. This serves as a foundational step in the progress toward AI-aided diagnosis and AI implementation in the field of IVS evaluation by POCUS.
这是一项基础研究,其中多器官系统床旁超声(POCUS)和机器学习(ML)被用于模拟医生关于功能性血管内容量状态(IVS)和利尿剂治疗需求的管理决策。我们将此作为ML在临床实践辅助决策中的一个有影响力的应用案例进行展示。IVS代表心脏、肾脏、肺部和其他器官系统的复杂生理相互作用。特别是,我们将血管充血和超负荷作为POCUS诊断和临床相关性中一个不断发展的概念加以关注。对于医生来说,能够在不干扰工作流程或让患者接受不必要检查、辐射或费用的情况下评估IVS至关重要。这项工作利用一个小型回顾性数据集作为对利尿剂使用的ML二元分类的可行性测试,并通过临床决策数据进行了验证。未来的工作将朝着床边人工智能(AI)的应用以及对以患者为中心的结果和医生工作流程改善的影响评估方向发展。
我们回顾性地审查和处理了1039个POCUS视频片段,包括心脏、胸部和下腔静脉(IVC)视图。多器官POCUS片段与从电子健康记录中提取的临床数据相关联,并进行了去识别处理以用于算法训练和验证。我们实施了一种双流三维(3D)深度学习方法,该方法融合心脏和IVC数据以对利尿剂使用需求进行二元分类。
我们提出的方法在确定利尿剂使用方面实现了较高的分类准确率(84%),受试者操作特征曲线下面积为0.84。
我们的双流3D深度神经网络能够高精度地对与医生关于使用或不使用利尿剂的分类相匹配的POCUS视频片段进行分类。这是在POCUS评估IVS领域向AI辅助诊断和AI实施迈进的基础步骤。