Suppr超能文献

开发人工智能辅助临床医学工具的挑战。

Challenges of developing artificial intelligence-assisted tools for clinical medicine.

机构信息

Yale School of Medicine, New Haven, Connecticut, USA.

Nanyang Technological University, Singapore, Singapore.

出版信息

J Gastroenterol Hepatol. 2021 Feb;36(2):295-298. doi: 10.1111/jgh.15378.

Abstract

Machine learning, a subset of artificial intelligence (AI), is a set of computational tools that can be used to enhance provision of clinical care in all areas of medicine. Gastroenterology and hepatology utilize multiple sources of information, including visual findings on endoscopy, radiologic imaging, manometric testing, genomes, proteomes, and metabolomes. However, clinical care is complex and requires a thoughtful approach to best deploy AI tools to improve quality of care and bring value to patients and providers. On the operational level, AI-assisted clinical management should consider logistic challenges in care delivery, data management, and algorithmic stewardship. There is still much work to be done on a broader societal level in developing ethical, regulatory, and reimbursement frameworks. A multidisciplinary approach and awareness of AI tools will create a vibrant ecosystem for using AI-assisted tools to guide and enhance clinical practice. From optically enhanced endoscopy to clinical decision support for risk stratification, AI tools will potentially transform our practice by leveraging massive amounts of data to personalize care to the right patient, in the right amount, at the right time.

摘要

机器学习是人工智能 (AI) 的一个分支,是一组计算工具,可用于增强医学各个领域的临床护理水平。胃肠病学和肝脏病学利用多种信息来源,包括内镜检查的视觉发现、影像学成像、测压测试、基因组、蛋白质组和代谢组学。然而,临床护理非常复杂,需要深思熟虑的方法来最好地部署人工智能工具,以提高护理质量并为患者和提供者带来价值。在运营层面上,人工智能辅助的临床管理应该考虑到医疗服务提供中的物流挑战、数据管理和算法管理。在更广泛的社会层面上,仍有许多工作要做,以制定伦理、监管和报销框架。多学科方法和对人工智能工具的认识将为使用人工智能辅助工具指导和增强临床实践创造一个充满活力的生态系统。从光学增强内镜检查到风险分层的临床决策支持,人工智能工具将通过利用大量数据将护理个性化到合适的患者、合适的数量和合适的时间,从而有可能改变我们的实践。

相似文献

1
Challenges of developing artificial intelligence-assisted tools for clinical medicine.
J Gastroenterol Hepatol. 2021 Feb;36(2):295-298. doi: 10.1111/jgh.15378.
2
Potentials of AI in medical image analysis in Gastroenterology and Hepatology.
J Gastroenterol Hepatol. 2021 Jan;36(1):31-38. doi: 10.1111/jgh.15327.
4
Proceedings from the First Global Artificial Intelligence in Gastroenterology and Endoscopy Summit.
Gastrointest Endosc. 2020 Oct;92(4):938-945.e1. doi: 10.1016/j.gie.2020.04.044. Epub 2020 Apr 25.
5
Utilizing large language models for gastroenterology research: a conceptual framework.
Therap Adv Gastroenterol. 2025 Apr 1;18:17562848251328577. doi: 10.1177/17562848251328577. eCollection 2025.
6
Evolving role of artificial intelligence in gastrointestinal endoscopy.
World J Gastroenterol. 2020 Dec 14;26(46):7287-7298. doi: 10.3748/wjg.v26.i46.7287.
7
Artificial intelligence in precision medicine in hepatology.
J Gastroenterol Hepatol. 2021 Mar;36(3):569-580. doi: 10.1111/jgh.15415.
8
Artificial intelligence in gastroenterology: Ethical and diagnostic challenges in clinical practice.
World J Gastroenterol. 2025 Mar 14;31(10):102725. doi: 10.3748/wjg.v31.i10.102725.
10
Application of Artificial Intelligence to Gastroenterology and Hepatology.
Gastroenterology. 2020 Jan;158(1):76-94.e2. doi: 10.1053/j.gastro.2019.08.058. Epub 2019 Oct 5.

引用本文的文献

1
Integrating Ethical Principles Into the Regulation of AI-Driven Medical Software.
Cureus. 2025 Feb 23;17(2):e79506. doi: 10.7759/cureus.79506. eCollection 2025 Feb.
3
Auxiliary diagnosis of primary bone tumors based on Machine learning model.
J Bone Oncol. 2024 Nov 9;49:100648. doi: 10.1016/j.jbo.2024.100648. eCollection 2024 Dec.
4
Exploiting biochemical data to improve osteosarcoma diagnosis with deep learning.
Health Inf Sci Syst. 2024 Apr 18;12(1):31. doi: 10.1007/s13755-024-00288-5. eCollection 2024 Dec.
7
Classification of clinically relevant intravascular volume status using point of care ultrasound and machine learning.
J Med Imaging (Bellingham). 2022 Sep;9(5):054502. doi: 10.1117/1.JMI.9.5.054502. Epub 2022 Sep 30.
8
Gut microbiota on admission as predictive biomarker for acute necrotizing pancreatitis.
Front Immunol. 2022 Aug 29;13:988326. doi: 10.3389/fimmu.2022.988326. eCollection 2022.
9
Randomized Controlled Trials of Artificial Intelligence in Clinical Practice: Systematic Review.
J Med Internet Res. 2022 Aug 25;24(8):e37188. doi: 10.2196/37188.

本文引用的文献

1
Geographic Distribution of US Cohorts Used to Train Deep Learning Algorithms.
JAMA. 2020 Sep 22;324(12):1212-1213. doi: 10.1001/jama.2020.12067.
2
5
Developing a delivery science for artificial intelligence in healthcare.
NPJ Digit Med. 2020 Aug 21;3:107. doi: 10.1038/s41746-020-00318-y. eCollection 2020.
6
Hidden in Plain Sight - Reconsidering the Use of Race Correction in Clinical Algorithms.
N Engl J Med. 2020 Aug 27;383(9):874-882. doi: 10.1056/NEJMms2004740. Epub 2020 Jun 17.
8
Cost savings in colonoscopy with artificial intelligence-aided polyp diagnosis: an add-on analysis of a clinical trial (with video).
Gastrointest Endosc. 2020 Oct;92(4):905-911.e1. doi: 10.1016/j.gie.2020.03.3759. Epub 2020 Mar 30.
10
Ethical Issues Posed by Field Research Using Highly Portable and Cloud-Enabled Neuroimaging.
Neuron. 2020 Mar 4;105(5):771-775. doi: 10.1016/j.neuron.2020.01.041.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验