Suppr超能文献

利用智能计算预测印度新冠疫情浪潮的不利情况。

Forecasting adversities of COVID-19 waves in India using intelligent computing.

作者信息

Chakraborty Arijit, Das Dipankar, Mitra Sajal, De Debashis, Pal Anindya J

机构信息

Bachelor of Computer Application Department, The Heritage Academy, Kolkata, India.

Department of Computer Science and Engineering, Heritage Institute of Technology, Kolkata, India.

出版信息

Innov Syst Softw Eng. 2022 Sep 26:1-17. doi: 10.1007/s11334-022-00486-y.

Abstract

The second wave of the COVID-19 pandemic outburst triggered enormously all over India. This ill-fated and fatal brawl affected millions of Indian citizens, with many active and infected Indians struggling to recover from this deadly disease to date, leading to a grief situation. The present situation warrants developing a robust and sound forecasting model to evaluate the adversities of the epidemic with reasonable accuracy to assist officials in curbing this hazard. Consequently, we employed Auto-ARIMA, Auto-ETS, Auto-MLP, Auto-ELM, AM, MLP and proposed ELM methods for assessing accumulative infected COVID-19 individuals by the end of July 2021. We made 90 days of advanced forecasting, i.e., up to 24 July 2021, for the number of cumulative infected COVID-19 cases of India using all seven methods in 15 days' intervals. We fine-tuned the hyper-parameters to enhance the prediction performance of these models and observed that the proposed ELM model offers satisfactory accuracy with MAPE of 5.01, and it rendered better accuracy than the other six models. To comprehend the dataset's nature, five features are extracted. The resulting feature values encouraged further investigation of the models for an updated dataset, where the proposed model provides encouraging results.

摘要

新冠疫情的第二波爆发在印度各地大规模触发。这场厄运连连且致命的疫情影响了数百万印度公民,许多活跃且受感染的印度人至今仍在努力从这种致命疾病中康复,导致了悲痛的局面。当前形势需要开发一个强大且可靠的预测模型,以合理的准确性评估疫情的不利影响,从而协助官员遏制这一危害。因此,我们采用了自回归整合移动平均模型(Auto-ARIMA)、自指数平滑法(Auto-ETS)、自多层感知器(Auto-MLP)、自极限学习机(Auto-ELM)、自适应混合模型(AM)、多层感知器(MLP)以及提出的极限学习机(ELM)方法,来评估截至2021年7月底累计感染新冠病毒的人数。我们以15天为间隔,使用所有七种方法对印度新冠病毒累计感染病例数进行了90天的提前预测,即截至2021年7月24日。我们对超参数进行了微调,以提高这些模型的预测性能,结果发现,所提出的ELM模型具有令人满意的准确性,平均绝对百分比误差(MAPE)为5.01,并且其准确性优于其他六个模型。为了理解数据集的性质,提取了五个特征。由此产生的特征值促使我们对更新后的数据集的模型进行进一步研究,在所提出的模型中得到了令人鼓舞的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5f8/9512957/7995d9ca4a06/11334_2022_486_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验