Suppr超能文献

基于深度学习与模糊规则归纳融合的新型冠状病毒疫情高不确定性下的复合蒙特卡洛决策

Composite Monte Carlo decision making under high uncertainty of novel coronavirus epidemic using hybridized deep learning and fuzzy rule induction.

作者信息

Fong Simon James, Li Gloria, Dey Nilanjan, Crespo Rubén González, Herrera-Viedma Enrique

机构信息

Department of Computer and Information Science, University of Macau, Macau, SAR, China.

DACC Laboratory, Zhuhai Institutes of Advanced Technology of the Chinese Academy of Sciences, China.

出版信息

Appl Soft Comput. 2020 Aug;93:106282. doi: 10.1016/j.asoc.2020.106282. Epub 2020 Apr 9.

Abstract

In the advent of the novel coronavirus epidemic since December 2019, governments and authorities have been struggling to make critical decisions under high uncertainty at their best efforts. In computer science, this represents a typical problem of machine learning over incomplete or limited data in early epidemic Composite Monte-Carlo (CMC) simulation is a forecasting method which extrapolates available data which are broken down from multiple correlated/casual micro-data sources into many possible future outcomes by drawing random samples from some probability distributions. For instance, the overall trend and propagation of the infested cases in China are influenced by the temporal-spatial data of the nearby cities around the Wuhan city (where the virus is originated from), in terms of the population density, travel mobility, medical resources such as hospital beds and the timeliness of quarantine control in each city etc. Hence a CMC is reliable only up to the closeness of the underlying statistical distribution of a CMC, that is supposed to represent the behaviour of the future events, and the correctness of the composite data relationships. In this paper, a case study of using CMC that is enhanced by deep learning network and fuzzy rule induction for gaining better stochastic insights about the epidemic development is experimented. Instead of applying simplistic and uniform assumptions for a MC which is a common practice, a deep learning-based CMC is used in conjunction of fuzzy rule induction techniques. As a result, decision makers are benefited from a better fitted MC outputs complemented by min-max rules that foretell about the extreme ranges of future possibilities with respect to the epidemic.

摘要

自2019年12月新型冠状病毒疫情出现以来,各国政府和当局一直在竭尽全力,在高度不确定性下艰难做出关键决策。在计算机科学中,这代表了一个典型的机器学习问题,即基于不完整或有限数据进行学习。复合蒙特卡罗(CMC)模拟是一种预测方法,它通过从某些概率分布中抽取随机样本,将从多个相关/因果微观数据源分解得到的可用数据外推到许多可能的未来结果。例如,中国感染病例的总体趋势和传播受到武汉市(病毒发源地)周边城市的时空数据影响,包括人口密度、人员流动、医院床位等医疗资源以及各城市检疫控制的及时性等。因此,只有当CMC的基础统计分布接近程度以及复合数据关系的正确性能够代表未来事件的行为时,CMC才是可靠的。本文进行了一个案例研究,尝试使用由深度学习网络和模糊规则归纳增强的CMC,以更好地洞察疫情发展的随机情况。与常见的对蒙特卡罗应用简单统一假设的做法不同,基于深度学习的CMC与模糊规则归纳技术结合使用。结果,决策者受益于拟合更好的蒙特卡罗输出,并辅以最小-最大规则,这些规则能够预测疫情未来可能性的极端范围。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/186a/7195106/934691092033/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验