Suppr超能文献

使用深度学习在计算机断层扫描上诊断坏疽性胆囊炎:一项初步研究。

Diagnosing gangrenous cholecystitis on computed tomography using deep learning: A preliminary study.

作者信息

Okuda Yoichi, Saida Tsukasa, Morinaga Keigo, Ohara Arisa, Hara Akihiro, Hashimoto Shinji, Takahashi Shinji, Goya Tomoaki, Ohkohchi Nobuhiro

机构信息

Depertment of Surgery Koyama Memorial Hospital Kashima Japan.

Department of Surgery Mitochuo Hospital Mito Japan.

出版信息

Acute Med Surg. 2022 Sep 20;9(1):e783. doi: 10.1002/ams2.783. eCollection 2022 Jan-Dec.

Abstract

AIM

To compare deep learning and experienced physicians in diagnosing gangrenous cholecystitis using computed tomography images and explore the feasibility of diagnostic assistance for acute cholecystitis requiring emergency surgery.

METHODS

This retrospective study included 25 patients with pathologically confirmed gangrenous cholecystitis and 129 patients with noncomplicated acute cholecystitis who underwent computed tomography between 2016 and 2021 at two institutions. All available computed tomography images at the time of the initial diagnosis were used for the analysis. A deep learning model based on a convolutional neural network was trained using 1,517 images of 112 patients (18 patients with gangrenous cholecystitis and 94 patients with acute cholecystitis) and tested with 68 images of 42 patients (seven patients with gangrenous cholecystitis and 35 patients with acute cholecystitis). Three blinded, experienced physicians independently interpreted the test images. The sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve were compared between the convolutional neural network and the reviewers.

RESULTS

The convolutional neural network (sensitivity, 0.70; 95% confidence interval [CI], 0.44-0.87, specificity, 0.93; 95% CI, 0.88-0.96, accuracy, 0.89; 95% CI, 0.81-0.95, area under the receiver operating characteristic curve, 0.84; 95% CI, 0.68-1.00) had achieved a better diagnostic performance than the reviewers (ex. sensitivity, 0.55; 95% CI, 0.30-0.77, specificity, 0.67; 95% CI, 0.62-0.71, accuracy, 0.65; 95% CI, 0.57-0.72, area under the receiver operating characteristic curve, 0.63; 95% CI, 0.44-0.82;  = 0.048 for area under the receiver operating characteristic curve versus convolutional neural network).

CONCLUSIONS

Deep learning had a better diagnostic performance than experienced reviewers in diagnosing gangrenous cholecystitis and has potential applicability for assisting in identifying indications for emergency surgery in the future.

摘要

目的

使用计算机断层扫描图像比较深度学习和经验丰富的医生对坏疽性胆囊炎的诊断能力,并探讨对需要急诊手术的急性胆囊炎进行诊断辅助的可行性。

方法

这项回顾性研究纳入了2016年至2021年期间在两家机构接受计算机断层扫描的25例经病理证实的坏疽性胆囊炎患者和129例非复杂性急性胆囊炎患者。初始诊断时所有可用的计算机断层扫描图像均用于分析。基于卷积神经网络的深度学习模型使用112例患者的1517张图像(18例坏疽性胆囊炎患者和94例急性胆囊炎患者)进行训练,并使用42例患者的68张图像(7例坏疽性胆囊炎患者和35例急性胆囊炎患者)进行测试。三位不知情的经验丰富的医生独立解读测试图像。比较卷积神经网络和审阅者之间的敏感性、特异性、准确性和受试者操作特征曲线下面积。

结果

卷积神经网络(敏感性为0.70;95%置信区间[CI]为0.44 - 0.87,特异性为0.93;95%CI为0.88 - 0.96,准确性为0.89;95%CI为0.81 - 0.95,受试者操作特征曲线下面积为0.84;95%CI为0.68 - 1.00)的诊断性能优于审阅者(例如,敏感性为0.55;95%CI为0.30 - 0.77,特异性为0.67;95%CI为0.62 - 0.71,准确性为0.65;95%CI为0.57 - 0.72,受试者操作特征曲线下面积为0.63;95%CI为0.44 - 0.82;受试者操作特征曲线下面积与卷积神经网络相比P = 0.048)。

结论

在诊断坏疽性胆囊炎方面,深度学习比经验丰富的审阅者具有更好的诊断性能,并且在未来协助确定急诊手术指征方面具有潜在的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/058e/9487185/544d5e43c00c/AMS2-9-e783-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验