Suppr超能文献

深度学习:放射科医生入门。

Deep Learning: A Primer for Radiologists.

机构信息

From the Departments of Radiology (G.C., E.V., A.T.) and Hepatopancreatobiliary Surgery (S.T.), Centre Hospitalier de l'Université de Montréal, Hôpital Saint-Luc, 850 rue Saint-Denis, Montréal, QC, Canada H2X 0A9; Imagia Cybernetics, Montréal, Québec, Canada (G.C., M.D.); Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, Calif (P.M.C.); Montreal Institute for Learning Algorithms, Montréal, Québec, Canada (E.V., M.D., C.J.P.); École Polytechnique, Montréal, Québec, Canada (E.V., C.J.P., S.K.); Department of Surgery, University of Montreal, Montréal, Québec, Canada (S.T.); and Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada (S.T., S.K., A.T.).

出版信息

Radiographics. 2017 Nov-Dec;37(7):2113-2131. doi: 10.1148/rg.2017170077.

Abstract

Deep learning is a class of machine learning methods that are gaining success and attracting interest in many domains, including computer vision, speech recognition, natural language processing, and playing games. Deep learning methods produce a mapping from raw inputs to desired outputs (eg, image classes). Unlike traditional machine learning methods, which require hand-engineered feature extraction from inputs, deep learning methods learn these features directly from data. With the advent of large datasets and increased computing power, these methods can produce models with exceptional performance. These models are multilayer artificial neural networks, loosely inspired by biologic neural systems. Weighted connections between nodes (neurons) in the network are iteratively adjusted based on example pairs of inputs and target outputs by back-propagating a corrective error signal through the network. For computer vision tasks, convolutional neural networks (CNNs) have proven to be effective. Recently, several clinical applications of CNNs have been proposed and studied in radiology for classification, detection, and segmentation tasks. This article reviews the key concepts of deep learning for clinical radiologists, discusses technical requirements, describes emerging applications in clinical radiology, and outlines limitations and future directions in this field. Radiologists should become familiar with the principles and potential applications of deep learning in medical imaging. RSNA, 2017.

摘要

深度学习是一类机器学习方法,在包括计算机视觉、语音识别、自然语言处理和游戏等在内的多个领域取得了成功并引起了广泛关注。深度学习方法可以将原始输入映射到期望的输出(例如,图像类别)。与需要从输入中手动提取特征的传统机器学习方法不同,深度学习方法可以直接从数据中学习这些特征。随着大型数据集和计算能力的提高,这些方法可以生成性能优异的模型。这些模型是多层人工神经网络,灵感来源于生物神经网络系统。网络中节点(神经元)之间的加权连接根据输入和目标输出的示例对通过网络反向传播的校正误差信号进行迭代调整。对于计算机视觉任务,卷积神经网络(CNN)已被证明非常有效。最近,在放射学中提出并研究了 CNN 的几个临床应用,用于分类、检测和分割任务。本文回顾了深度学习对临床放射科医生的关键概念,讨论了技术要求,描述了在临床放射学中的新兴应用,并概述了该领域的局限性和未来方向。放射科医生应该熟悉深度学习在医学成像中的原理和潜在应用。RSNA,2017。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验