Suppr超能文献

一种用于超声图像上甲状腺结节视觉定位和自动诊断的高效深度卷积神经网络模型。

An efficient deep convolutional neural network model for visual localization and automatic diagnosis of thyroid nodules on ultrasound images.

作者信息

Zhu Jialin, Zhang Sheng, Yu Ruiguo, Liu Zhiqiang, Gao Hongyan, Yue Bing, Liu Xun, Zheng Xiangqian, Gao Ming, Wei Xi

机构信息

Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.

College of Intelligence and Computing, Tianjin University, Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin Key Laboratory of Advanced Networking, Tianjin, China.

出版信息

Quant Imaging Med Surg. 2021 Apr;11(4):1368-1380. doi: 10.21037/qims-20-538.

Abstract

BACKGROUND

The aim of this study was to construct a deep convolutional neural network (CNN) model for localization and diagnosis of thyroid nodules on ultrasound and evaluate its diagnostic performance.

METHODS

We developed and trained a deep CNN model called the Brief Efficient Thyroid Network (BETNET) using 16,401 ultrasound images. According to the parameters of the model, we developed a computer-aided diagnosis (CAD) system to localize and differentiate thyroid nodules. The validation dataset (1,000 images) was used to compare the diagnostic performance of the model using three state-of-the-art algorithms. We used an internal test set (300 images) to evaluate the BETNET model by comparing it with diagnoses from five radiologists with varying degrees of experience in thyroid nodule diagnosis. Lastly, we demonstrated the general applicability of our artificial intelligence (AI) system for diagnosing thyroid cancer in an external test set (1,032 images).

RESULTS

The BETNET model accurately detected thyroid nodules in visualization experiments. The model demonstrated higher values for area under the receiver operating characteristic (AUC-ROC) curve [0.983, 95% confidence interval (CI): 0.973-0.990], sensitivity (99.19%), accuracy (98.30%), and Youden index (0.9663) than the three state-of-the-art algorithms (P<0.05). In the internal test dataset, the diagnostic accuracy of the BETNET model was 91.33%, which was markedly higher than the accuracy of one experienced (85.67%) and two less experienced radiologists (77.67% and 69.33%). The area under the ROC curve of the BETNET model (0.951) was similar to that of the two highly skilled radiologists (0.940 and 0.953) and significantly higher than that of one experienced and two less experienced radiologists (P<0.01). The kappa coefficient of the BETNET model and the pathology results showed good agreement (0.769). In addition, the BETNET model achieved an excellent diagnostic performance (AUC =0.970, 95% CI: 0.958-0.980) when applied to ultrasound images from another independent hospital.

CONCLUSIONS

We developed a deep learning model which could accurately locate and automatically diagnose thyroid nodules on ultrasound images. The BETNET model exhibited better diagnostic performance than three state-of-the-art algorithms, which in turn performed similarly in diagnosis as the experienced radiologists. The BETNET model has the potential to be applied to ultrasound images from other hospitals.

摘要

背景

本研究的目的是构建一个用于超声甲状腺结节定位与诊断的深度卷积神经网络(CNN)模型,并评估其诊断性能。

方法

我们使用16401张超声图像开发并训练了一个名为简易高效甲状腺网络(BETNET)的深度CNN模型。根据该模型的参数,我们开发了一个计算机辅助诊断(CAD)系统来定位和区分甲状腺结节。验证数据集(1000张图像)用于使用三种先进算法比较该模型的诊断性能。我们使用内部测试集(300张图像)通过将BETNET模型与五位在甲状腺结节诊断方面经验程度不同的放射科医生的诊断结果进行比较来评估该模型。最后,我们在外部测试集(1032张图像)中展示了我们的人工智能(AI)系统在诊断甲状腺癌方面的普遍适用性。

结果

BETNET模型在可视化实验中准确检测出甲状腺结节。该模型在受试者操作特征(AUC-ROC)曲线下面积[0.983,95%置信区间(CI):0.973-0.990]、灵敏度(99.19%)、准确率(98.30%)和尤登指数(0.9663)方面的值高于三种先进算法(P<0.05)。在内部测试数据集中,BETNET模型的诊断准确率为91.33%,明显高于一位经验丰富的放射科医生(85.67%)以及两位经验较少的放射科医生(77.67%和69.33%)的准确率。BETNET模型的ROC曲线下面积(0.951)与两位技术高超的放射科医生(0.940和0.953)的相似,且显著高于一位经验丰富和两位经验较少的放射科医生(P<0.01)。BETNET模型与病理结果的kappa系数显示出良好的一致性(0.769)。此外,当应用于另一家独立医院的超声图像时,BETNET模型实现了出色的诊断性能(AUC =0.970,95% CI:0.958-0.980)。

结论

我们开发了一个深度学习模型,该模型可以在超声图像上准确地定位并自动诊断甲状腺结节。BETNET模型表现出比三种先进算法更好的诊断性能,而这三种先进算法在诊断方面与经验丰富的放射科医生表现相似。BETNET模型有潜力应用于其他医院的超声图像。

相似文献

2
Automatic thyroid nodule recognition and diagnosis in ultrasound imaging with the YOLOv2 neural network.
World J Surg Oncol. 2019 Jan 8;17(1):12. doi: 10.1186/s12957-019-1558-z.
6
Deep learning diagnostic performance and visual insights in differentiating benign and malignant thyroid nodules on ultrasound images.
Exp Biol Med (Maywood). 2023 Dec;248(24):2538-2546. doi: 10.1177/15353702231220664. Epub 2024 Jan 26.
7
Diagnosis of thyroid micronodules on ultrasound using a deep convolutional neural network.
Sci Rep. 2023 May 4;13(1):7231. doi: 10.1038/s41598-023-34459-3.
9
Deep convolutional neural network for the diagnosis of thyroid nodules on ultrasound.
Head Neck. 2019 Apr;41(4):885-891. doi: 10.1002/hed.25415. Epub 2019 Feb 4.

引用本文的文献

1
From Bench-to-Bedside: How Artificial Intelligence is Changing Thyroid Nodule Diagnostics, a Systematic Review.
J Clin Endocrinol Metab. 2024 Jun 17;109(7):1684-1693. doi: 10.1210/clinem/dgae277.
2
ThyroidNet: A Deep Learning Network for Localization and Classification of Thyroid Nodules.
Comput Model Eng Sci. 2023 Dec 30;139(1):361-382. doi: 10.32604/cmes.2023.031229.
4
The Application of Artificial Intelligence in Thyroid Nodules: A Systematic Review Based on Bibliometric Analysis.
Endocr Metab Immune Disord Drug Targets. 2024;24(11):1280-1290. doi: 10.2174/0118715303264254231117113456.
5
A model for predicting lymph node metastasis of thyroid carcinoma: a multimodality convolutional neural network study.
Quant Imaging Med Surg. 2023 Dec 1;13(12):8370-8382. doi: 10.21037/qims-23-318. Epub 2023 Nov 7.
6
Aided diagnosis of thyroid nodules based on an all-optical diffraction neural network.
Quant Imaging Med Surg. 2023 Sep 1;13(9):5713-5726. doi: 10.21037/qims-23-98. Epub 2023 Aug 14.
9
Artificial intelligence in thyroid ultrasound.
Front Oncol. 2023 May 12;13:1060702. doi: 10.3389/fonc.2023.1060702. eCollection 2023.
10
Diagnostic value of ultrasound elastography and conventional ultrasound for thyroid nodules: a meta-analysis.
Quant Imaging Med Surg. 2023 Mar 1;13(3):1300-1311. doi: 10.21037/qims-22-505. Epub 2023 Feb 23.

本文引用的文献

2
The value of the computer-aided diagnosis system for thyroid lesions based on computed tomography images.
Quant Imaging Med Surg. 2019 Apr;9(4):642-653. doi: 10.21037/qims.2019.04.01.
3
Squeeze-and-Excitation Networks.
IEEE Trans Pattern Anal Mach Intell. 2020 Aug;42(8):2011-2023. doi: 10.1109/TPAMI.2019.2913372. Epub 2019 Apr 29.
4
Diagnostic Performance Evaluation of a Computer-Assisted Imaging Analysis System for Ultrasound Risk Stratification of Thyroid Nodules.
AJR Am J Roentgenol. 2019 Jul;213(1):169-174. doi: 10.2214/AJR.18.20740. Epub 2019 Apr 11.
5
Automatic thyroid nodule recognition and diagnosis in ultrasound imaging with the YOLOv2 neural network.
World J Surg Oncol. 2019 Jan 8;17(1):12. doi: 10.1186/s12957-019-1558-z.
7
Deep learning for classifying fibrotic lung disease on high-resolution computed tomography: a case-cohort study.
Lancet Respir Med. 2018 Nov;6(11):837-845. doi: 10.1016/S2213-2600(18)30286-8. Epub 2018 Sep 16.
8
Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
CA Cancer J Clin. 2018 Nov;68(6):394-424. doi: 10.3322/caac.21492. Epub 2018 Sep 12.
9
Automated deep-neural-network surveillance of cranial images for acute neurologic events.
Nat Med. 2018 Sep;24(9):1337-1341. doi: 10.1038/s41591-018-0147-y. Epub 2018 Aug 13.
10
Computer-Aided Diagnosis of Thyroid Nodules via Ultrasonography: Initial Clinical Experience.
Korean J Radiol. 2018 Jul-Aug;19(4):665-672. doi: 10.3348/kjr.2018.19.4.665. Epub 2018 Jun 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验